scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Titania Nanotubes Prepared by Chemical Processing

01 Oct 1999-Advanced Materials (Wiley)-Vol. 11, Iss: 15, pp 1307-1311
TL;DR: In this paper, a method for the synthesis of needle-shaped titanium oxide (TiO2) nanotubes was proposed. But the method was not suitable for the case of amorphous raw materials, and it required the use of distilled water and HCl aqueous solution.
Abstract: We report a new method for the synthesis of titanium oxide (TiO2) nanotubes. When anatase-phase- or rutile-phase-containing TiO2 was treated with an aqueous solution of 5–10 M NaOH for 20 h at 110 °C and then with HCl aqueous solution and distilled water, needle-shaped TiO2 products were obtained (diameter ≈ 8 nm, length ≈ 100 nm). The needle-shaped products are nanotubes with inner diameters of approximately 5 nm and outer diameters of approximately 8 nm. The formation mechanism of titania nanotubes is discussed in terms of the detailed observation of the products by transmission electron microscopy: the crystalline raw material is first converted to an amorphous product through alkali treatment, and subsequently, titania nanotubes are formed after treatment with distilled water and HCl aqueous solution.
Citations
More filters
Journal ArticleDOI
TL;DR: This review attempts to cover all aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.
Abstract: TiO(2) is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices. In 1999, first reports showed the feasibility to grow highly ordered arrays of TiO(2) nanotubes by a simple but optimized electrochemical anodization of a titanium metal sheet. This finding stimulated intense research activities that focused on growth, modification, properties, and applications of these one-dimensional nanostructures. This review attempts to cover all these aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.

2,735 citations

Journal ArticleDOI
TL;DR: Mechanistic studies have shown that monodisperse nanocrystals are produced when the burst of nucleation that enables separation of the nucleation and growth processes is combined with the subsequent diffusion-controlled growth process through which the crystal size is determined.
Abstract: Much progress has been made over the past ten years on the synthesis of monodisperse spherical nanocrystals. Mechanistic studies have shown that monodisperse nanocrystals are produced when the burst of nucleation that enables separation of the nucleation and growth processes is combined with the subsequent diffusion-controlled growth process through which the crystal size is determined. Several chemical methods have been used to synthesize uniform nanocrystals of metals, metal oxides, and metal chalcogenides. Monodisperse nanocrystals of CdSe, Co, and other materials have been generated in surfactant solution by nucleation induced at high temperature, and subsequent aging and size selection. Monodisperse nanocrystals of many metals and metal oxides, including magnetic ferrites, have been synthesized directly by thermal decomposition of metal-surfactant complexes prepared from the metal precursors and surfactants. Nonhydrolytic sol-gel reactions have been used to synthesize various transition-metal-oxide nanocrystals. Monodisperse gold nanocrystals have been obtained from polydisperse samples by digestive-ripening processes. Uniform-sized nanocrystals of gold, silver, platinum, and palladium have been synthesized by polyol processes in which metal salts are reduced by alcohols in the presence of appropriate surfactants.

1,765 citations

Journal ArticleDOI
TL;DR: In this paper, three general approaches (template assisted, anodic oxidation, and alkaline hydrothermal) for the preparation of nanostructured titanate and TiO2 are reviewed.
Abstract: Tubular and fibrous nanostructures of titanates have recently been synthesized and characterized. Three general approaches (template assisted, anodic oxidation, and alkaline hydrothermal) for the preparation of nanostructured titanate and TiO2 are reviewed. The crystal structures, morphologies, and mechanism of formation of nanostructured titanates produced by the alkaline hydrothermal method are critically discussed. The physicochemical properties of nanostructured titanates are highlighted and the links between properties and applications are emphasized. Examples of early applications of nanostructured titanates in catalysis, photocatalysis, electrocatalysis, lithium batteries, hydrogen storage, and solar-cell technologies are reviewed. The stability of titanate nanotubes at elevated temperatures and in acid media is considered.

1,543 citations

Journal ArticleDOI
TL;DR: The present review tries to give a comprehensive and most up to date view to the field, with an emphasis on the currently most investigated anodic TiO2 nanotube arrays.
Abstract: In the present review we try to give a comprehensive and most up to date view to the field, with an emphasis on the currently most investigated anodic TiO2 nanotube arrays. We will first give an overview of different synthesis approaches to produce TiO2 nanotubes and TiO2 nanotube arrays, and then deal with physical and chemical properties of TiO2 nanotubes and techniques to modify them. Finally, we will provide an overview of the most explored and prospective applications of nanotubular TiO2.

984 citations