scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Titanium nanostructures for biomedical applications

TL;DR: Perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties are focused on.
Abstract: Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel targeting drug delivery system for 2-Methoxyestradiol (2ME) was presented to improve the clinical application of this antitumor drug.
Abstract: The aim of this study was to prepare a novel targeting drug delivery system for 2-Methoxyestradiol (2ME) in order to improve the clinical application of this antitumor drug. It is based in nanoparticles (NPs) of titanium dioxide (TiO2) coated with polyethylene glycol (PEG) and loaded with 2ME. A complete IR and Raman characterization have been made to confirm the formation of TiO2–PEG–2ME composite. Vibrational modes have been assigned for TiO2, PEG, and 2ME and functionalized TiO2–PEG and TiO2–PEG–2ME. The observed variation in peak position of FTIR and Raman of each for these composites has been elucidated in terms of intermolecular interactions between PEG–2ME and TiO2, obtaining step-by-step the modification processes that were attributed to the conjugation of PEG and 2ME to TiO2 NPs. Modifying TiO2 NPs with PEG loaded with the 2ME drug revealed that the titanium dioxide nanocarrier possesses an effective adsorption capability, and we discuss their potential application as a system of drug delivery.

387 citations

Journal ArticleDOI
TL;DR: The Mg-6Zn alloy performed better than Ti-3Al-2.5V at promoting healing and reducing inflammation, and may be a promising candidate for use in the pins of circular staplers for gastrointestinal reconstruction in medicine.
Abstract: To evaluate the different effects of Mg-6Zn alloy and Ti-3Al-2.5V alloy implants in intestinal tract healing, we compared these two different alloys with respect to their effect on a rat's intestinal tract, using serum magnesium, radiology, pathology and immunohistochemistry in vivo. It was found using the scanning electron microscope that the Mg-6Zn alloy began to degrade during the first week and that the Ti-3Al-2.5V alloy was non-degradable throughout the process. The Mg-6Zn alloy did not have an impact on serum magnesium. Superior to the Ti-3Al-2.5V alloy, the Mg-6Zn alloy enhanced the expression of transforming growth factor-β1 in healing tissue, and promoted the expression of both the vascular endothelial growth factor and the basic fibroblast growth factor, which helped angiogenesis and healing. The Mg-6Zn alloy reduced the expression of the tumor necrosis factor (TNF-α) at different stages and decreased inflammatory response, which may have been related to the zinc inhibiting TNF-α. In general, the Mg-6Zn alloy performed better than Ti-3Al-2.5V at promoting healing and reducing inflammation. The Mg-6Zn alloy may be a promising candidate for use in the pins of circular staplers for gastrointestinal reconstruction in medicine.

346 citations

Journal ArticleDOI
TL;DR: The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodesgradable materials.
Abstract: Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome.

273 citations


Cites background from "Titanium nanostructures for biomedi..."

  • ...Titanium, being one of the low-density elements, is one of the materials used for biomedical applications [102]....

    [...]

Journal ArticleDOI
01 Apr 2017-Apmis
TL;DR: The present overview will address the development in the last two decades of antifouling and antimicrobial biomaterials designed to potentially limit the initial stages of microbial adhesion, as well as the microbial growth and biofilm formation on medical device surfaces.
Abstract: The use of implantable medical devices is a common and indispensable part of medical care for both diagnostic and therapeutic purposes. However, as side effect, the implant of medical devices quite often leads to the occurrence of difficult-to-treat infections, as a consequence of the colonization of their abiotic surfaces by biofilm-growing microorganisms increasingly resistant to antimicrobial therapies. A promising strategy to combat device-related infections is based on anti-infective biomaterials that either repel microbes, so they cannot attach to the device surfaces, or kill them in the surrounding areas. In general, such biomaterials are characterized by antifouling coatings, exhibiting low adhesion or even repellent properties towards microorganisms, or antimicrobial coatings, able to kill microbes approaching the surface. In this light, the present overview will address the development in the last two decades of antifouling and antimicrobial biomaterials designed to potentially limit the initial stages of microbial adhesion, as well as the microbial growth and biofilm formation on medical device surfaces.

212 citations


Cites background from "Titanium nanostructures for biomedi..."

  • ...TiO2 has been used for the coating of different substrates including glass (172), stainless steel (173, 174) and medical devices (175, 176)....

    [...]

Journal ArticleDOI
TL;DR: It is found that shot peening and HIP are the most effective treatments to improve the high and the very-high cycle fatigue resistance, respectively and preserve the good biocompatibility ensured by the biomedical Titanium Grade 23.
Abstract: Fatigue resistance and biocompatibility are key parameters for the successful implantation of hard-tissue prostheses, which nowadays are more and more frequently manufactured by selective laser melting (SLM). For this purpose, the present paper is aimed at investigating the effect of post-sintering treatments on the fatigue behavior and biological properties of Ti samples produced by SLM. After the building process, all samples are heat treated to achieve a complete stress relief. The remaining ones are tribofinished with the aim of reducing the surface roughness of the as-sintered condition. Part of the tribofinished samples are then subjected to one of the following post-sintering treatments: (i) shot peening, (ii) hot isostatic pressing (HIP), and (iii) electropolishing. It is found that shot peening and HIP are the most effective treatments to improve the high and the very-high cycle fatigue resistance, respectively. At the same time, they preserve the good biocompatibility ensured by the biomedical Titanium Grade 23.

157 citations

References
More filters
Book
01 Jan 1980
TL;DR: In this paper, the authors present a comprehensive overview of electrode processes and their application in the field of chemical simulation, including potential sweep and potential sweep methods, coupled homogeneous chemical reactions, double-layer structure and adsorption.
Abstract: Major Symbols. Standard Abbreviations. Introduction and Overview of Electrode Processes. Potentials and Thermodynamics of Cells. Kinetics of Electrode Reactions. Mass Transfer by Migration and Diffusion. Basic Potential Step Methods. Potential Sweep Methods. Polarography and Pulse Voltammetry. Controlled--Current Techniques. Method Involving Forced Convention--Hydrodynamic Methods. Techniques Based on Concepts of Impedance. Bulk Electrolysis Methods. Electrode Reactions with Coupled Homogeneous Chemical Reactions. Double--Layer Structure and Adsorption. Electroactive Layers and Modified Electrodes. Electrochemical Instrumentation. Scanning Probe Techniques. Spectroelectrochemistry and Other Coupled Characterization Methods. Photoelectrochemistry and Electrogenerated Chemiluminescence. Appendix A: Mathematical Methods. Appendix B: Digital Simulations of Electrochemical Problems. Appendix C: Reference Tables. Index.

20,533 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of alloy chemistry, thermomechanical processing and surface condition on these properties is discussed and various surface modification techniques to achieve superior biocompatibility, higher wear and corrosion resistance.

4,113 citations

Journal ArticleDOI
TL;DR: A review of surface modification techniques for titanium and titanium alloys can be found in this article, where the authors have shown that the wear resistance, corrosion resistance, and biological properties can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained.
Abstract: Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, in order to improve the biological, chemical, and mechanical properties, surface modification is often performed. This article reviews the various surface modification technologies pertaining to titanium and titanium alloys including mechanical treatment, thermal spraying, sol–gel, chemical and electrochemical treatment, and ion implantation from the perspective of biomedical engineering. Recent work has shown that the wear resistance, corrosion resistance, and biological properties of titanium and titanium alloys can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained. The proper surface treatment expands the use of titanium and titanium alloys in the biomedical fields. Some of the recent applications are also discussed in this paper.

3,019 citations

Journal ArticleDOI
TL;DR: This review attempts to cover all aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.
Abstract: TiO(2) is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices. In 1999, first reports showed the feasibility to grow highly ordered arrays of TiO(2) nanotubes by a simple but optimized electrochemical anodization of a titanium metal sheet. This finding stimulated intense research activities that focused on growth, modification, properties, and applications of these one-dimensional nanostructures. This review attempts to cover all these aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.

2,735 citations

Journal ArticleDOI
TL;DR: The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.

2,443 citations