scispace - formally typeset
Search or ask a question
Journal ArticleDOI

TNFα in liver fibrosis.

30 Sep 2015-Current Pathobiology Reports (Curr Pathobiol Rep)-Vol. 3, Iss: 4, pp 253-261
TL;DR: The role of TNFα in hepatic stellate cell survival and activation, and the crosstalk between hepaticStellate cells and hepatocytes or other immune cells, such as macrophages, dendritic cells, and B cells in the development of liver fibrosis are discussed.
Abstract: Hepatocyte death, inflammation, and liver fibrosis are the hallmarks of chronic liver disease. Tumor necrosis factor-α (TNFα) is an inflammatory cytokine involved in liver inflammation and sustained liver inflammation leads to liver fibrosis. TNFα exerts inflammation, proliferation, and apoptosis. However, the role of TNFα signaling in liver fibrosis is not fully understood. This review highlights the recent findings demonstrating the molecular mechanisms of TNFα and its downstream signaling in liver fibrosis. During the progression of liver fibrosis, hepatic stellate cells play a pivotal role in a dynamic process of production of extracellular matrix proteins and modulation of immune response. Hepatic stellate cells transdifferentiate into activated myofibroblasts in response to damaged hepatocyte-derived mediators and immune cell-derived cytokines/chemokines. Here, we will discuss the role of TNFα in hepatic stellate cell survival and activation and the crosstalk between hepatic stellate cells and hepatocytes or other immune cells, such as macrophages, dendritic cells, and B cells in the development of liver fibrosis.
Citations
More filters
Journal ArticleDOI
TL;DR: The researchers propose the existence of two subtypes of arthrofibrosis—one involving active scar formation, and one in which inflammatory processes have resolved—and they suggest each should be treated differently.
Abstract: Arthrofibrosis is a fibrotic joint disorder that begins with an inflammatory reaction to insults such as injury, surgery and infection. Excessive extracellular matrix and adhesions contract pouches, bursae and tendons, cause pain and prevent a normal range of joint motion, with devastating consequences for patient quality of life. Arthrofibrosis affects people of all ages, with published rates varying. The risk factors and best management strategies are largely unknown due to a poor understanding of the pathology and lack of diagnostic biomarkers. However, current research into the pathogenesis of fibrosis in organs now informs the understanding of arthrofibrosis. The process begins when stress signals stimulate immune cells. The resulting cascade of cytokines and mediators drives fibroblasts to differentiate into myofibroblasts, which secrete fibrillar collagens and transforming growth factor-β (TGF-β). Positive feedback networks then dysregulate processes that normally terminate healing processes. We propose two subtypes of arthrofibrosis occur: active arthrofibrosis and residual arthrofibrosis. In the latter the fibrogenic processes have resolved but the joint remains stiff. The best therapeutic approach for each subtype may differ significantly. Treatment typically involves surgery, however, a pharmacological approach to correct dysregulated cell signalling could be more effective. Recent research shows that myofibroblasts are capable of reversing differentiation, and understanding the mechanisms of pathogenesis and resolution will be essential for the development of cell-based treatments. Therapies with significant promise are currently available, with more in development, including those that inhibit TGF-β signalling and epigenetic modifications. This review focuses on pathogenesis of sterile arthrofibrosis and therapeutic treatments.

113 citations

Journal ArticleDOI
TL;DR: This review discusses the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models and demonstrates the functional relevance of certain types of histone deacetylases in various kinds of fibrosis.
Abstract: Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.

62 citations

Journal ArticleDOI
TL;DR: This review specially focuses on the metabolic changes which impact on HSC activation and fibrogenesis.
Abstract: Activation of hepatic stellate cell (HSC) involves the transition from a quiescent to a proliferative, migratory, and fibrogenic phenotype (i.e., myofibroblast), which is characteristic of liver fibrogenesis. Multiple cellular and molecular signals which contribute to HSC activation have been identified. This review specially focuses on the metabolic changes which impact on HSC activation and fibrogenesis.

62 citations

Journal ArticleDOI
TL;DR: The authors expect that the development of combinatorial therapies, which combine compounds that target various pathways of fibrosis progression, will have a major impact as future etiology-independent therapies.
Abstract: Chronic liver disease is due to various causes of persistent liver damage and will eventually lead to the development of liver fibrosis. If no treatment is initiated, this condition may progress to...

37 citations

Journal ArticleDOI
TL;DR: Esophageal epithelial LOX might have a role in the development of fibrosis with substantial translational implications andGene ontology and pathway analyses linked TNF-α and LOX expression in patients with EoE, which was validated in independent sets of patients with fibrostenotic conditions.
Abstract: Background Fibrosis and stricture are major comorbidities in patients with eosinophilic esophagitis (EoE). Lysyl oxidase (LOX), a collagen cross-linking enzyme, has not been investigated in the context of EoE. Objective We investigated regulation of epithelial LOX expression as a novel biomarker and functional effector of fibrostenotic disease conditions associated with EoE. Methods LOX expression was analyzed by using RNA-sequencing, PCR assays, and immunostaining in patients with EoE; cytokine-stimulated esophageal 3-dimensional organoids; and fibroblast–epithelial cell coculture, the latter coupled with fluorescence-activated cell sorting. Results Gene ontology and pathway analyses linked TNF-α and LOX expression in patients with EoE, which was validated in independent sets of patients with fibrostenotic conditions. TNF-α–mediated epithelial LOX upregulation was recapitulated in 3-dimensional organoids and coculture experiments. We find that fibroblast-derived TNF-α stimulates epithelial LOX expression through activation of nuclear factor κB and TGF-β–mediated signaling. In patients receiver operating characteristic analyses suggested that LOX upregulation indicates disease complications and fibrostenotic conditions in patients with EoE. Conclusions There is a novel positive feedback mechanism in epithelial LOX induction through fibroblast-derived TNF-α secretion. Esophageal epithelial LOX might have a role in the development of fibrosis with substantial translational implications.

35 citations

References
More filters
Journal ArticleDOI
TL;DR: An overview of established NF-kappaB signaling pathways is provided with focus on the current state of research into the mechanisms that regulate IKK activation and NF- kappaB transcriptional activity.
Abstract: The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.

3,829 citations

Journal ArticleDOI
25 Jul 2003-Cell
TL;DR: TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal fails to be activated, and the cell survives.

2,478 citations

Journal ArticleDOI
TL;DR: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization.
Abstract: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.

2,419 citations

Journal ArticleDOI
TL;DR: Some general aspects of this fascinating molecule are covered and then the molecular mechanisms of TNF signal transduction will be addressed, including the multiple facets of crosstalk between the various signalling pathways engaged by TNF.
Abstract: A single mouse click on the topic tumor necrosis factor (TNF) in PubMed reveals about 50 000 articles providing one or the other information about this pleiotropic cytokine or its relatives. This demonstrates the enormous scientific and clinical interest in elucidating the biology of a molecule (or rather a large family of molecules), which began now almost 30 years ago with the description of a cytokine able to exert antitumoral effects in mouse models. Although our understanding of the multiple functions of TNF in vivo and of the respective underlying mechanisms at a cellular and molecular level has made enormous progress since then, new aspects are steadily uncovered and it appears that still much needs to be learned before we can conclude that we have a full comprehension of TNF biology. This review shortly covers some general aspects of this fascinating molecule and then concentrates on the molecular mechanisms of TNF signal transduction. In particular, the multiple facets of crosstalk between the various signalling pathways engaged by TNF will be addressed. Cell Death and Differentiation (2003) 10, 45–65. doi:10.1038/ sj.cdd.4401189

2,322 citations

Journal ArticleDOI
TL;DR: Establishing the importance of the normal ECM in liver has illuminated recent attempts to develop artificial liver support by recognizing that all cellular elements and supporting structures must be reconstituted to preserve differentiated function of liver ex vivo.

2,046 citations