scispace - formally typeset
Search or ask a question
Book

Toeplitz forms and their applications

TL;DR: In this paper, Toeplitz forms are used for the trigonometric moment problem and other problems in probability theory, analysis, and statistics, including analytic functions and integral equations.
Abstract: Part I: Toeplitz Forms: Preliminaries Orthogonal polynomials. Algebraic properties Orthogonal polynomials. Limit properties The trigonometric moment problem Eigenvalues of Toeplitz forms Generalizations and analogs of Toeplitz forms Further generalizations Certain matrices and integral equations of the Toeplitz type Part II: Applications of Toeplitz Forms: Applications to analytic functions Applications to probability theory Applications to statistics Appendix: Notes and references Bibliography Index.
Citations
More filters
Book
01 Jan 1977
TL;DR: The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toepler matrices with absolutely summable elements are derived in a tutorial manner in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject.
Abstract: The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes.

2,404 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce the concept of sure screening and propose a sure screening method that is based on correlation learning, called sure independence screening, to reduce dimensionality from high to a moderate scale that is below the sample size.
Abstract: Summary. Variable selection plays an important role in high dimensional statistical modelling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, accuracy of estimation and computational cost are two top concerns. Recently, Candes and Tao have proposed the Dantzig selector using L1-regularization and showed that it achieves the ideal risk up to a logarithmic factor log (p). Their innovative procedure and remarkable result are challenged when the dimensionality is ultrahigh as the factor log (p) can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method that is based on correlation learning, called sure independence screening, to reduce dimensionality from high to a moderate scale that is below the sample size. In a fairly general asymptotic framework, correlation learning is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, iterative sure independence screening is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be accomplished by a well-developed method such as smoothly clipped absolute deviation, the Dantzig selector, lasso or adaptive lasso. The connections between these penalized least squares methods are also elucidated.

2,204 citations

Posted Content
TL;DR: The concept of sure screening is introduced and a sure screening method that is based on correlation learning, called sure independence screening, is proposed to reduce dimensionality from high to a moderate scale that is below the sample size.
Abstract: Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality $p$, estimation accuracy and computational cost are two top concerns. In a recent paper, Candes and Tao (2007) propose the Dantzig selector using $L_1$ regularization and show that it achieves the ideal risk up to a logarithmic factor $\log p$. Their innovative procedure and remarkable result are challenged when the dimensionality is ultra high as the factor $\log p$ can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method based on a correlation learning, called the Sure Independence Screening (SIS), to reduce dimensionality from high to a moderate scale that is below sample size. In a fairly general asymptotic framework, the correlation learning is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, an iterative SIS (ISIS) is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be accomplished by a well-developed method such as the SCAD, Dantzig selector, Lasso, or adaptive Lasso. The connections of these penalized least-squares methods are also elucidated.

1,917 citations

Journal ArticleDOI
TL;DR: In this paper, the authors define measures of linear dependence and feedback for multiple time series, and a readily usable theory of inference for all of these measures and their decompositions is described; the computations involved are modest.
Abstract: Measures of linear dependence and feedback for multiple time series are defined. The measure of linear dependence is the sum of the measure of linear feedback from the first series to the second, linear feedback from the second to the first, and instantaneous linear feedback. The measures are nonnegative, and zero only when feedback (causality) of the relevant type is absent. The measures of linear feedback from one series to another can be additively decomposed by frequency. A readily usable theory of inference for all of these measures and their decompositions is described; the computations involved are modest.

1,874 citations

Journal ArticleDOI
TL;DR: The nature of the VIP method is explored and it is compared with other methods through computer simulation experiments considering four factors–the proportion of the number of relevant predictor, the magnitude of correlations between predictors, the structure of regression coefficients, andThe magnitude of signal to noise.

1,595 citations


Cites background from "Toeplitz forms and their applicatio..."

  • ...(8) gives a very specific pattern to the eigenvalues and eigenvectors of G [10]....

    [...]