scispace - formally typeset

Journal ArticleDOI

Tool release: gathering 802.11n traces with channel state information

22 Jan 2011-Vol. 41, Iss: 1, pp 53-53

TL;DR: The measurement setup comprises the customized versions of Intel's close-source firmware and open-source iwlwifi wireless driver, userspace tools to enable these measurements, access point functionality for controlling both ends of the link, and Matlab scripts for data analysis.

AbstractWe are pleased to announce the release of a tool that records detailed measurements of the wireless channel along with received 802.11 packet traces. It runs on a commodity 802.11n NIC, and records Channel State Information (CSI) based on the 802.11 standard. Unlike Receive Signal Strength Indicator (RSSI) values, which merely capture the total power received at the listener, the CSI contains information about the channel between sender and receiver at the level of individual data subcarriers, for each pair of transmit and receive antennas.Our toolkit uses the Intel WiFi Link 5300 wireless NIC with 3 antennas. It works on up-to-date Linux operating systems: in our testbed we use Ubuntu 10.04 LTS with the 2.6.36 kernel. The measurement setup comprises our customized versions of Intel's close-source firmware and open-source iwlwifi wireless driver, userspace tools to enable these measurements, access point functionality for controlling both ends of the link, and Matlab (or Octave) scripts for data analysis. We are releasing the binary of the modified firmware, and the source code to all the other components.

Topics: Firmware (56%), Channel state information (53%), MIMO (53%), Communication channel (52%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Proceedings ArticleDOI
17 Aug 2015
TL;DR: SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems.
Abstract: This paper presents the design and implementation of SpotFi, an accurate indoor localization system that can be deployed on commodity WiFi infrastructure. SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems. SpotFi makes two key technical contributions. First, SpotFi incorporates super-resolution algorithms that can accurately compute the angle of arrival (AoA) of multipath components even when the access point (AP) has only three antennas. Second, it incorporates novel filtering and estimation techniques to identify AoA of direct path between the localization target and AP by assigning values for each path depending on how likely the particular path is the direct path. Our experiments in a multipath rich indoor environment show that SpotFi achieves a median accuracy of 40 cm and is robust to indoor hindrances such as obstacles and multipath.

849 citations


Cites methods from "Tool release: gathering 802.11n tra..."

  • ...We use Intel 5300 WiFi chips in the current prototype because of the availability of CSI extraction software for these chips [68], but SpotFi can easily be deployed with WiFi APs that use chips from other manufacturers....

    [...]

  • ...We employed Linux CSI tool [68] to obtain the PHY layer CSI information for each packet....

    [...]


Proceedings ArticleDOI
07 Sep 2015
TL;DR: CARM is a CSI based human Activity Recognition and Monitoring system that quantitatively builds the correlation between CSI value dynamics and a specific human activity and recognizes a given activity by matching it to the best-fit profile.
Abstract: Some pioneer WiFi signal based human activity recognition systems have been proposed. Their key limitation lies in the lack of a model that can quantitatively correlate CSI dynamics and human activities. In this paper, we propose CARM, a CSI based human Activity Recognition and Monitoring system. CARM has two theoretical underpinnings: a CSI-speed model, which quantifies the correlation between CSI value dynamics and human movement speeds, and a CSI-activity model, which quantifies the correlation between the movement speeds of different human body parts and a specific human activity. By these two models, we quantitatively build the correlation between CSI value dynamics and a specific human activity. CARM uses this correlation as the profiling mechanism and recognizes a given activity by matching it to the best-fit profile. We implemented CARM using commercial WiFi devices and evaluated it in several different environments. Our results show that CARM achieves an average accuracy of greater than 96%.

643 citations


Cites methods from "Tool release: gathering 802.11n tra..."

  • ...CSI Based: CSI values are available in many commercial devices such as Intel 5300 [9] and Atheros 9390 network interface cards (NICs) [19]....

    [...]


Journal ArticleDOI
01 Oct 2001
TL;DR: The Internet is going mobile and wireless, perhaps quite soon, with a number of diverse technologies leading the charge, including, 3G cellular networks based on CDMA technology, a wide variety of what is deemed 2.5G cellular technologies (e.g., EDGE, GPRS and HDR), and IEEE 802.11 wireless local area networks (WLANs).
Abstract: At some point in the future, how far out we do not exactly know, wireless access to the Internet will outstrip all other forms of access bringing the freedom of mobility to the way we access the we...

613 citations


Proceedings ArticleDOI
07 Sep 2014
TL;DR: This paper presents device-free location-oriented activity identification at home through the use of existing WiFi access points and WiFi devices (e.g., desktops, thermostats, refrigerators, smartTVs, laptops) in a low-cost system that can uniquely identify both in-place activities and walking movements across a home by comparing them against signal profiles.
Abstract: Activity monitoring in home environments has become increasingly important and has the potential to support a broad array of applications including elder care, well-being management, and latchkey child safety. Traditional approaches involve wearable sensors and specialized hardware installations. This paper presents device-free location-oriented activity identification at home through the use of existing WiFi access points and WiFi devices (e.g., desktops, thermostats, refrigerators, smartTVs, laptops). Our low-cost system takes advantage of the ever more complex web of WiFi links between such devices and the increasingly fine-grained channel state information that can be extracted from such links. It examines channel features and can uniquely identify both in-place activities and walking movements across a home by comparing them against signal profiles. Signal profiles construction can be semi-supervised and the profiles can be adaptively updated to accommodate the movement of the mobile devices and day-to-day signal calibration. Our experimental evaluation in two apartments of different size demonstrates that our approach can achieve over 96% average true positive rate and less than 1% average false positive rate to distinguish a set of in-place and walking activities with only a single WiFi access point. Our prototype also shows that our system can work with wider signal band (802.11ac) with even higher accuracy.

607 citations


Cites methods from "Tool release: gathering 802.11n tra..."

  • ...36 kernel and are equipped with Intel WiFi Link 5300 cards for measuring CSI [12]....

    [...]


Proceedings Article
16 Mar 2016
TL;DR: Chronos, a system that enables a single WiFi access point to localize clients to within tens of centimeters, demonstrates that Chronos's accuracy is comparable to state-of-the-art localization systems, which use four or five access points.
Abstract: We present Chronos, a system that enables a single WiFi access point to localize clients to within tens of centimeters. Such a system can bring indoor positioning to homes and small businesses which typically have a single access point. The key enabler underlying Chronos is a novel algorithm that can compute sub-nanosecond time-of-flight using commodity WiFi cards. By multiplying the time-of-flight with the speed of light, a MIMO access point computes the distance between each of its antennas and the client, hence localizing it. Our implementation on commodity WiFi cards demonstrates that Chronos's accuracy is comparable to state-of-the-art localization systems, which use four or five access points.

572 citations


References
More filters

Proceedings ArticleDOI
30 Aug 2010
TL;DR: It is shown that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide, and the rate prediction is as good as the best rate adaptation algorithms for 802.
Abstract: RSSI is known to be a fickle indicator of whether a wireless link will work, for many reasons. This greatly complicates operation because it requires testing and adaptation to find the best rate, transmit power or other parameter that is tuned to boost performance. We show that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide. Our model uses 802.11n Channel State Information measurements as input to an OFDM receiver model we develop by using the concept of effective SNR. It is simple, easy to deploy, broadly useful, and accurate. It makes packet delivery predictions for 802.11a/g SISO rates and 802.11n MIMO rates, plus choices of transmit power and antennas. We report testbed experiments that show narrow transition regions (

650 citations


"Tool release: gathering 802.11n tra..." refers methods in this paper

  • ...It works on up-to-date Linux operating systems: in our testbed we use Ubuntu 10.04 LTS with the 2.6.36 kernel....

    [...]


Journal ArticleDOI
01 Oct 2001
TL;DR: The Internet is going mobile and wireless, perhaps quite soon, with a number of diverse technologies leading the charge, including, 3G cellular networks based on CDMA technology, a wide variety of what is deemed 2.5G cellular technologies (e.g., EDGE, GPRS and HDR), and IEEE 802.11 wireless local area networks (WLANs).
Abstract: At some point in the future, how far out we do not exactly know, wireless access to the Internet will outstrip all other forms of access bringing the freedom of mobility to the way we access the we...

613 citations


Journal ArticleDOI
07 Jan 2010
TL;DR: This tutorial provides a brief introduction to multiple antenna techniques, and describes the two main classes of those techniques, spatial diversity and spatial multiplexing.
Abstract: The use of multiple antennas and MIMO techniques based on them is the key feature of 802.11n equipment that sets it apart from earlier 802.11a/g equipment. It is responsible for superior performance, reliability and range. In this tutorial, we provide a brief introduction to multiple antenna techniques. We describe the two main classes of those techniques, spatial diversity and spatial multiplexing. To ground our discussion, we explain how they work in 802.11n NICs in practice.

77 citations