scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tool release: gathering 802.11n traces with channel state information

22 Jan 2011-Vol. 41, Iss: 1, pp 53-53
TL;DR: The measurement setup comprises the customized versions of Intel's close-source firmware and open-source iwlwifi wireless driver, userspace tools to enable these measurements, access point functionality for controlling both ends of the link, and Matlab scripts for data analysis.
Abstract: We are pleased to announce the release of a tool that records detailed measurements of the wireless channel along with received 802.11 packet traces. It runs on a commodity 802.11n NIC, and records Channel State Information (CSI) based on the 802.11 standard. Unlike Receive Signal Strength Indicator (RSSI) values, which merely capture the total power received at the listener, the CSI contains information about the channel between sender and receiver at the level of individual data subcarriers, for each pair of transmit and receive antennas.Our toolkit uses the Intel WiFi Link 5300 wireless NIC with 3 antennas. It works on up-to-date Linux operating systems: in our testbed we use Ubuntu 10.04 LTS with the 2.6.36 kernel. The measurement setup comprises our customized versions of Intel's close-source firmware and open-source iwlwifi wireless driver, userspace tools to enable these measurements, access point functionality for controlling both ends of the link, and Matlab (or Octave) scripts for data analysis. We are releasing the binary of the modified firmware, and the source code to all the other components.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that multipath is essential and beneficial to key generation as it increases the channel randomness and the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys.
Abstract: This paper presents a thorough experimental study on key generation principles, i.e., temporal variation, channel reciprocity, and spatial decorrelation, through a testbed constructed by using wireless open-access research platform. It is the first comprehensive study through: 1) carrying out a number of experiments in different multipath environments, including an anechoic chamber, a reverberation chamber, and an indoor office environment, which represents little, rich, and moderate multipath, respectively; 2) considering static, object moving, and mobile scenarios in these environments, which represents different levels of channel dynamicity; and 3) studying two most popular channel parameters, i.e., channel state information and received signal strength. Through results collected from over a hundred tests, this paper offers insights to the design of a secure and efficient key generation system. We show that multipath is essential and beneficial to key generation as it increases the channel randomness. We also find that the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys. This paper complements existing research by experiments constructed by a new hardware platform.

74 citations


Cites background from "Tool release: gathering 802.11n tra..."

  • ...CFR is not publicly available in most of the commercial NICs, but can be obtained in the Intel WiFi Link 5300 NIC [47] or customized hardware platforms, such as WARP or USRP....

    [...]

  • ...11a/g/n. CFR is not publicly available in most of the commercial NICs, but can be obtained in the Intel WiFi Link 5300 NIC [47] or customized hardware platforms, such as WARP or USRP....

    [...]

  • ...This platform allows us to have full access to the transmission parameters, which are not available in the commercial network interface cards (NICs)....

    [...]

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey of lightweight security solutions conceived for IoT, relying on key generation from wireless channels, and demonstrates that key generation relying on the randomness of wireless channels is eminently suitable for IoT.
Abstract: The Internet of Things (IoT) is a transformative technology, which is revolutionizing our everyday life by connecting everyone and everything together. The massive number of devices are preferably connected wirelessly because of the easy installment and flexible deployment. However, the broadcast nature of the wireless medium makes the information accessible to everyone including malicious users, which should hence be protected by encryption. Unfortunately, the secure and efficient provision of cryptographic keys for low-cost IoT devices is challenging; weak keys have resulted in severe security breaches, as evidenced by numerous notorious cyberattacks. This paper provides a comprehensive survey of lightweight security solutions conceived for IoT, relying on key generation from wireless channels. We first introduce the key generation fundamentals and protocols. We then examine how to apply this emerging technique to secure IoT and demonstrate that key generation relying on the randomness of wireless channels is eminently suitable for IoT. This paper reviews the extensive research efforts in the areas of theoretical modelling, simulation based validation and experimental exploration. We finally discuss the hurdles and challenges that key generation is facing and suggest future work to make key generation a reliable and secure solution to safeguard the IoT.

73 citations

Proceedings ArticleDOI
16 Jun 2019
TL;DR: WiVi is designed, a novel human activity recognition scheme that is able to identify common human activities in an accurate and device-free manner via multimodal machine learning using only commercial WiFi-enabled IoT devices and camera.
Abstract: Human activity recognition plays an indispensable role in a myriad of emerging applications in context-aware services. Accurate activity recognition systems usually require the user to carry mobile or wearable devices, which is inconvenient for long term usage. In this paper, we design WiVi, a novel human activity recognition scheme that is able to identify common human activities in an accurate and device-free manner via multimodal machine learning using only commercial WiFi-enabled IoT devices and camera. For sensing using WiFi, a new platform is developed to extract fine-grained WiFi channel information and transform them into WiFi frames. A tailored convolutional neural network model is designed to extract high-level representative features among the WiFi frames in order to provide human activity estimation. We utilized a variant of C3D model for activity sensing using vision. Following this, WiVi performs multimodal fusion at the decision level to combine the strength of WiFi and vision by constructing an ensembled DNN model. Extensive experiments are conducted in an indoor environment, demonstrating that WiVi achieves 97.5% activity recognition accuracy and is robust under unfavorable situations, as each modality provides the complementary sensing when the other faces its limiting conditions.

72 citations

Journal ArticleDOI
01 Jun 2021
TL;DR: In this article, the authors proposed an Amplitude-Feature Deep Convolutional Generative Adversarial Network (AF-DCGAN) model to increase the diversity of the CSI amplitude feature map.
Abstract: With widely deployed WiFi network and the uniqueness feature (fingerprint) of wireless channel information, fingerprinting based WiFi positioning is currently the mainstream indoor positioning method, in which fingerprint database construction is crucial. However, for accuracy, this approach requires enough data to be sampled at many reference points, which consumes excessive efforts and time. In this paper, we collect Channel State Information (CSI) data at reference points by the method of device-free localization, then we convert collected CSI data into amplitude feature maps and extend the fingerprint database using the proposed Amplitude-Feature Deep Convolutional Generative Adversarial Network (AF-DCGAN) model. The use of AF-DCGAN accelerates convergence during the training phase, and substantially increases the diversity of the CSI amplitude feature map. The extended fingerprint database both reduces the human effort involved in fingerprint database construction and the accuracy of an indoor localization system, as demonstrated in the experiments.

72 citations

Journal ArticleDOI
TL;DR: A passive crowdsourcing channel state information (CSI) based indoor localization scheme, C2IL, built upon an innovative method to accurately estimate the moving speed solely based on 802.11n CSI and designed a trajectory clustering based localization algorithm to provide precise real-time indoor localization and tracking.
Abstract: Numerous indoor localization techniques have been proposed recently to meet the intensive demand for location-based service (LBS). Among them, the most popular solutions are the Wi-Fi fingerprint-based approaches. The core challenge is to lower the cost of fingerprint site-survey. One of the trends is to collect the piecewise data from clients and establish the radio map in crowdsourcing manner. However the low participation rate blocks the practical use. In this work, we propose a passive crowdsourcing channel state information (CSI) based indoor localization scheme, C2IL. Despite a crowdsourcing based approach, our scheme is totally transparent to the client and the only requirement is to connect to our 802.11n access points (APs). C2IL is built upon an innovative method to accurately estimate the moving speed solely based on 802.11n CSI. Knowing the walking speed of a client and its surrounding APs, a graph matching algorithm is employed to extract the received signal strength (RSS) fingerprints and establish the fingerprint map. For localization phase, we design a trajectory clustering based localization algorithm to provide precise real-time indoor localization and tracking. We develop and deploy a practical working system of C2IL in a large office environment. Extensive evaluations indicate that the error of speed estimation is within 3%, and the localization error is within 2 m at 80% time in a very complex indoor environment.

71 citations


Cites methods from "Tool release: gathering 802.11n tra..."

  • ...The estimated moving distance, together with the estimated geodesic distance of different fingerprint locations in the map, will be used to further improve the quality of the matching, and thus, the accuracy of the localization....

    [...]

References
More filters
Proceedings ArticleDOI
30 Aug 2010
TL;DR: It is shown that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide, and the rate prediction is as good as the best rate adaptation algorithms for 802.
Abstract: RSSI is known to be a fickle indicator of whether a wireless link will work, for many reasons. This greatly complicates operation because it requires testing and adaptation to find the best rate, transmit power or other parameter that is tuned to boost performance. We show that, for the first time, wireless packet delivery can be accurately predicted for commodity 802.11 NICs from only the channel measurements that they provide. Our model uses 802.11n Channel State Information measurements as input to an OFDM receiver model we develop by using the concept of effective SNR. It is simple, easy to deploy, broadly useful, and accurate. It makes packet delivery predictions for 802.11a/g SISO rates and 802.11n MIMO rates, plus choices of transmit power and antennas. We report testbed experiments that show narrow transition regions (

697 citations


"Tool release: gathering 802.11n tra..." refers methods in this paper

  • ...It works on up-to-date Linux operating systems: in our testbed we use Ubuntu 10.04 LTS with the 2.6.36 kernel....

    [...]

Journal ArticleDOI
01 Oct 2001
TL;DR: The Internet is going mobile and wireless, perhaps quite soon, with a number of diverse technologies leading the charge, including, 3G cellular networks based on CDMA technology, a wide variety of what is deemed 2.5G cellular technologies (e.g., EDGE, GPRS and HDR), and IEEE 802.11 wireless local area networks (WLANs).
Abstract: At some point in the future, how far out we do not exactly know, wireless access to the Internet will outstrip all other forms of access bringing the freedom of mobility to the way we access the we...

615 citations

Journal ArticleDOI
07 Jan 2010
TL;DR: This tutorial provides a brief introduction to multiple antenna techniques, and describes the two main classes of those techniques, spatial diversity and spatial multiplexing.
Abstract: The use of multiple antennas and MIMO techniques based on them is the key feature of 802.11n equipment that sets it apart from earlier 802.11a/g equipment. It is responsible for superior performance, reliability and range. In this tutorial, we provide a brief introduction to multiple antenna techniques. We describe the two main classes of those techniques, spatial diversity and spatial multiplexing. To ground our discussion, we explain how they work in 802.11n NICs in practice.

89 citations