scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Topics in current chemistry

10 Aug 1982-Journal of Organometallic Chemistry (Elsevier BV)-Vol. 234, Iss: 2
About: This article is published in Journal of Organometallic Chemistry.The article was published on 1982-08-10. It has received 339 citations till now. The article focuses on the topics: Current (fluid).
Citations
More filters
Journal ArticleDOI
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.

17,188 citations

01 Sep 2010
TL;DR: In this paper, the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations for Pd-catalyzed amination reactions is discussed.
Abstract: Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and have been applied in a range of contexts. This perspective attempts to aid the reader in the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations.

966 citations

Journal ArticleDOI
TL;DR: Some of the critical characteristics of DNA charge transport chemistry are reviewed, taking examples from a range of systems, and consider these characteristics in the context of their mechanistic implications.
Abstract: DNA charge transport (CT) chemistry has received considerable attention by scientific researchers over the past 15 years since our first provocative publication on long range CT in a DNA assembly.1,2 This interest, shared by physicists, chemists and biologists, reflects the potential of DNA CT to provide a sensitive route for signaling, whether in the construction of nanoscale biosensors or as an enzymatic tool to detect damage in the genome. Research into DNA CT chemistry began as a quest to determine whether the DNA double helix, a macromolecular assembly in solution with π-stacked base pairs, might share conductive characteristics with π-stacked solids. Physicists carried out sophisticated experiments to measure the conductivity of DNA samples, but the means to connect discrete DNA assemblies into the devices to gauge conductivity varied, as did the conditions under which conductivities were determined. Chemists constructed DNA assemblies to measure hole and electron transport in solution using a variety of hole and electron donors. Here, too, DNA CT was seen to depend upon the connections, or coupling, between donors and the DNA base pair stack. Importantly, these experiments have resolved the debate over whether DNA CT is possible. Moreover these studies have shown that DNA CT, irrespective of the oxidant or reductant used to initiate the chemistry, can occur over long molecular distances but can be exquisitely sensitive to perturbations in the base pair stack. Here we review some of the critical characteristics of DNA charge transport chemistry, taking examples from a range of systems, and consider these characteristics in the context of their mechanistic implications. This review is not intended to be exhaustive but instead to be illustrative. For instance, we describe studies involving measurements in solution using pendant photooxidants to inject holes, conductivity studies with covalently modified assemblies, and electrochemical studies on DNA-modified electrodes. We do not focus in detail on the differences amongst these constructs but instead on their similarities. It is the similarity among these various systems that allows us to consider different mechanisms to describe DNA CT. Thus we review also the various mechanisms for DNA CT that have been put forth and attempt to reconcile these mechanistic proposals with the many disparate measurements of DNA CT. Certainly the debate among researchers has shifted from "is DNA CT possible?" to "how does it work?". This review intends to explore this latter question in detail.

674 citations

Journal ArticleDOI
TL;DR: In this paper, self-assembled monolayers and multilayers (SAMs) of organic molecules have been used to achieve low gate leakage currents and good chemical/thermal stability.
Abstract: Principal goals in organic thin-film transistor (OTFT) gate dielectric research include achieving: (i) low gate leakage currents and good chemical/thermal stability, (ii) minimized interface trap state densities to maximize charge transport efficiency, (iii) compatibility with both p- and n- channel organic semiconductors, (iv) enhanced capacitance to lower OTFT operating voltages, and (v) efficient fabrication via solution-phase processing methods. In this Review, we focus on a prominent class of alternative gate dielectric materials: self-assembled monolayers (SAMs) and multilayers (SAMTs) of organic molecules having good insulating properties and large capacitance values, requisite properties for addressing these challenges. We first describe the formation and properties of SAMs on various surfaces (metals and oxides), followed by a discussion of fundamental factors governing charge transport through SAMs. The last section focuses on the roles that SAMs and SAMTs play in OTFTs, such as surface treatments, gate dielectrics, and finally as the semiconductor layer in ultra-thin OTFTs.

595 citations

Journal ArticleDOI
TL;DR: In this paper, relaxor ferroelectrics were studied in a random field state, and it was shown that the dielectric susceptibility for relaxors is much broader in temperature than that of conventional ferro-electrics.
Abstract: Relaxor ferroelectrics were discovered in the 1950s but many of their properties are not understood. In this review, we shall concentrate on materials such as PMN (PbMg1/3Nb2/3O3), which crystallize in the cubic perovskite structure but with the Mg ion, charge 2+, and the Nb ion, charge 5+, randomly distributed over the B site of the perovskite structure. The peak of the dielectric susceptibility for relaxors is much broader in temperature than that of conventional ferroelectrics, while below the maximum of the susceptibility most relaxors remain cubic and show no electric polarization, unlike that observed for conventional ferroelectrics. Because of the large width of the susceptibility, relaxors are often used as capacitors. Recently, there have been many X-ray and neutron scattering studies of relaxors and the results have enabled a more detailed picture to be obtained. An important conclusion is that relaxors can exist in a random field state, as initially proposed by Westphal, Kleemann and Glinchuk, ...

357 citations


Cites methods from "Topics in current chemistry"

  • ...Two other techniques have been developed to overcome this problem: tunable monochromatic spectrometry based on backward wave oscillator (BWO) sources [100] and time domain THz spectroscopy (TDTS) based on femto-second pulsed lasers [101]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.

17,188 citations

01 Sep 2010
TL;DR: In this paper, the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations for Pd-catalyzed amination reactions is discussed.
Abstract: Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and have been applied in a range of contexts. This perspective attempts to aid the reader in the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations.

966 citations

Journal ArticleDOI
TL;DR: Some of the critical characteristics of DNA charge transport chemistry are reviewed, taking examples from a range of systems, and consider these characteristics in the context of their mechanistic implications.
Abstract: DNA charge transport (CT) chemistry has received considerable attention by scientific researchers over the past 15 years since our first provocative publication on long range CT in a DNA assembly.1,2 This interest, shared by physicists, chemists and biologists, reflects the potential of DNA CT to provide a sensitive route for signaling, whether in the construction of nanoscale biosensors or as an enzymatic tool to detect damage in the genome. Research into DNA CT chemistry began as a quest to determine whether the DNA double helix, a macromolecular assembly in solution with π-stacked base pairs, might share conductive characteristics with π-stacked solids. Physicists carried out sophisticated experiments to measure the conductivity of DNA samples, but the means to connect discrete DNA assemblies into the devices to gauge conductivity varied, as did the conditions under which conductivities were determined. Chemists constructed DNA assemblies to measure hole and electron transport in solution using a variety of hole and electron donors. Here, too, DNA CT was seen to depend upon the connections, or coupling, between donors and the DNA base pair stack. Importantly, these experiments have resolved the debate over whether DNA CT is possible. Moreover these studies have shown that DNA CT, irrespective of the oxidant or reductant used to initiate the chemistry, can occur over long molecular distances but can be exquisitely sensitive to perturbations in the base pair stack. Here we review some of the critical characteristics of DNA charge transport chemistry, taking examples from a range of systems, and consider these characteristics in the context of their mechanistic implications. This review is not intended to be exhaustive but instead to be illustrative. For instance, we describe studies involving measurements in solution using pendant photooxidants to inject holes, conductivity studies with covalently modified assemblies, and electrochemical studies on DNA-modified electrodes. We do not focus in detail on the differences amongst these constructs but instead on their similarities. It is the similarity among these various systems that allows us to consider different mechanisms to describe DNA CT. Thus we review also the various mechanisms for DNA CT that have been put forth and attempt to reconcile these mechanistic proposals with the many disparate measurements of DNA CT. Certainly the debate among researchers has shifted from "is DNA CT possible?" to "how does it work?". This review intends to explore this latter question in detail.

674 citations

Journal ArticleDOI
TL;DR: In this paper, self-assembled monolayers and multilayers (SAMs) of organic molecules have been used to achieve low gate leakage currents and good chemical/thermal stability.
Abstract: Principal goals in organic thin-film transistor (OTFT) gate dielectric research include achieving: (i) low gate leakage currents and good chemical/thermal stability, (ii) minimized interface trap state densities to maximize charge transport efficiency, (iii) compatibility with both p- and n- channel organic semiconductors, (iv) enhanced capacitance to lower OTFT operating voltages, and (v) efficient fabrication via solution-phase processing methods. In this Review, we focus on a prominent class of alternative gate dielectric materials: self-assembled monolayers (SAMs) and multilayers (SAMTs) of organic molecules having good insulating properties and large capacitance values, requisite properties for addressing these challenges. We first describe the formation and properties of SAMs on various surfaces (metals and oxides), followed by a discussion of fundamental factors governing charge transport through SAMs. The last section focuses on the roles that SAMs and SAMTs play in OTFTs, such as surface treatments, gate dielectrics, and finally as the semiconductor layer in ultra-thin OTFTs.

595 citations

Journal ArticleDOI
TL;DR: In this paper, relaxor ferroelectrics were studied in a random field state, and it was shown that the dielectric susceptibility for relaxors is much broader in temperature than that of conventional ferro-electrics.
Abstract: Relaxor ferroelectrics were discovered in the 1950s but many of their properties are not understood. In this review, we shall concentrate on materials such as PMN (PbMg1/3Nb2/3O3), which crystallize in the cubic perovskite structure but with the Mg ion, charge 2+, and the Nb ion, charge 5+, randomly distributed over the B site of the perovskite structure. The peak of the dielectric susceptibility for relaxors is much broader in temperature than that of conventional ferroelectrics, while below the maximum of the susceptibility most relaxors remain cubic and show no electric polarization, unlike that observed for conventional ferroelectrics. Because of the large width of the susceptibility, relaxors are often used as capacitors. Recently, there have been many X-ray and neutron scattering studies of relaxors and the results have enabled a more detailed picture to be obtained. An important conclusion is that relaxors can exist in a random field state, as initially proposed by Westphal, Kleemann and Glinchuk, ...

357 citations