scispace - formally typeset
Open AccessJournal ArticleDOI

Topological field theory of time-reversal invariant insulators

Xiao-Liang Qi, +2 more
- 24 Nov 2008 - 
- Vol. 78, Iss: 19, pp 195424
Reads0
Chats0
TLDR
In this paper, it was shown that the fundamental time-reversal invariant (TRI) insulator exists in $4+1$ dimensions, where the effective field theory is described by the $(4 + 1)$-dimensional Chern-Simons theory and the topological properties of the electronic structure are classified by the second Chern number.
Abstract
We show that the fundamental time-reversal invariant (TRI) insulator exists in $4+1$ dimensions, where the effective-field theory is described by the $(4+1)$-dimensional Chern-Simons theory and the topological properties of the electronic structure are classified by the second Chern number. These topological properties are the natural generalizations of the time reversal-breaking quantum Hall insulator in $2+1$ dimensions. The TRI quantum spin Hall insulator in $2+1$ dimensions and the topological insulator in $3+1$ dimensions can be obtained as descendants from the fundamental TRI insulator in $4+1$ dimensions through a dimensional reduction procedure. The effective topological field theory and the ${Z}_{2}$ topological classification for the TRI insulators in $2+1$ and $3+1$ dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of measurable phenomena, the most striking of which is the topological magnetoelectric effect, where an electric field generates a topological contribution to the magnetization in the same direction, with a universal constant of proportionality quantized in odd multiples of the fine-structure constant $\ensuremath{\alpha}={e}^{2}∕\ensuremath{\hbar}c$. Finally, we present a general classification of all topological insulators in various dimensions and describe them in terms of a unified topological Chern-Simons field theory in phase space.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface

TL;DR: In this article, first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Bi2Se3, SbSe3 and BiSe3 were performed.
Journal ArticleDOI

Weyl and Dirac semimetals in three-dimensional solids

TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Journal ArticleDOI

Berry phase effects on electronic properties

TL;DR: In this paper, a detailed review of the role of the Berry phase effect in various solid state applications is presented. And a requantization method that converts a semiclassical theory to an effective quantum theory is demonstrated.
Journal ArticleDOI

Topological Photonics

TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
References
More filters
Journal ArticleDOI

Multiferroic and magnetoelectric materials

TL;DR: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements that arises through the quantum mechanical phenomenon of exchange.
Journal ArticleDOI

Quantum spin Hall effect in graphene

TL;DR: Graphene is converted from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator and the spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Journal ArticleDOI

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

TL;DR: In this article, the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field effect transistor, was measured and it was shown that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device.
Journal ArticleDOI

CP Conservation in the Presence of Pseudoparticles

TL;DR: In this paper, the authors give an explanation of the conservation of strong interactions which includes the effects of pseudoparticles, and they find it is a natural result for any theory where at least one flavor of fermion acquires its mass through a Yukawa coupling to a scalar field which has nonvanishing vacuum expectation value.
Journal ArticleDOI

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

TL;DR: In this article, the quantum spin Hall (QSH) effect can be realized in mercury-cadmium telluride semiconductor quantum wells, a state of matter with topological properties distinct from those of conventional insulators.
Related Papers (5)