scispace - formally typeset
Search or ask a question
Book

Topological Insulators and Topological Superconductors

07 Apr 2013-
TL;DR: Topological insulators and superconductors as discussed by the authors are one of the most exciting areas of research in condensed matter physics and have been studied extensively in the last few decades and decades.
Abstract: This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Citations
More filters
Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
TL;DR: This work obtains the phase diagram of the non-Hermitian Su-Schrieffer-Heeger model, whose topological zero modes are determined by theNon-Bloch winding number instead of the Bloch-Hamiltonian-based topological number.
Abstract: The bulk-boundary correspondence is among the central issues of non-Hermitian topological states. We show that a previously overlooked "non-Hermitian skin effect" necessitates redefinition of topological invariants in a generalized Brillouin zone. The resultant phase diagrams dramatically differ from the usual Bloch theory. Specifically, we obtain the phase diagram of the non-Hermitian Su-Schrieffer-Heeger model, whose topological zero modes are determined by the non-Bloch winding number instead of the Bloch-Hamiltonian-based topological number. Our work settles the issue of the breakdown of conventional bulk-boundary correspondence and introduces the non-Bloch bulk-boundary correspondence.

1,326 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures.
Abstract: Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor–superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

858 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that reflection symmetry can be employed to generate examples of second-order topological insulators and superconductors, although the topologically protected states at corners (in two dimensions) or at crystal edges (in three dimensions) continue to exist if reflection symmetry is broken.
Abstract: Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline boundaries, but with topologically protected gapless states at the intersection of two boundaries. Without further spatial symmetries, five of the ten Altland-Zirnbauer symmetry classes allow for the existence of such second-order topological insulators in two and three dimensions. We show that reflection symmetry can be employed to systematically generate examples of second-order topological insulators and superconductors, although the topologically protected states at corners (in two dimensions) or at crystal edges (in three dimensions) continue to exist if reflection symmetry is broken. A three-dimensional second-order topological insulator with broken time-reversal symmetry shows a Hall conductance quantized in units of e^{2}/h.

807 citations

Journal ArticleDOI
TL;DR: This review summarizes recent developments in realizing band structures with geometrical and topological features in experiments on cold atomic gases, beginning with a summary of the key concepts of geometry and topology for Bloch bands.
Abstract: There have been significant recent advances in realizing band structures with geometrical and topological features in experiments on cold atomic gases. This review summarizes these developments, beginning with a summary of the key concepts of geometry and topology for Bloch bands. Descriptions are given of the different methods that have been used to generate these novel band structures for cold atoms and of the physical observables that have allowed their characterization. The focus is on the physical principles that underlie the different experimental approaches, providing a conceptual framework within which to view these developments. Also described is how specific experimental implementations can influence physical properties. Moving beyond single-particle effects, descriptions are given of the forms of interparticle interactions that emerge when atoms are subjected to these energy bands and of some of the many-body phases that may be sought in future experiments.

685 citations