scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Topological surface states protected from backscattering by chiral spin texture

27 Aug 2009-Nature (Nature Publishing Group)-Vol. 460, Iss: 7259, pp 1106-1109
TL;DR: It is demonstrated that the chiral nature of these states protects the spin of the carriers, potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing.
Abstract: Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin–orbit coupling inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with unconventional spin textures. A key predicted feature of such spin-textured boundary states is their insensitivity to spin-independent scattering, which is thought to protect them from backscattering and localization. Recently, experimental and theoretical efforts have provided strong evidence for the existence of both two- and three-dimensional classes of such topological insulator materials in semiconductor quantum well structures and several bismuth-based compounds, but so far experiments have not probed the sensitivity of these chiral states to scattering. Here we use scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy to visualize the gapless surface states in the three-dimensional topological insulator Bi_(1-x)Sb_x, and examine in detail the influence of scattering from disorder caused by random alloying in this compound. We show that, despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observations demonstrate that the chiral nature of these states protects the spin of the carriers. These chiral states are therefore potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing.
Citations
More filters
Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations

Journal ArticleDOI
10 Mar 2010-Nature
TL;DR: Certain insulators have exotic metallic states on their surfaces that render the electrons travelling on such surfaces insensitive to scattering by impurities, possibly finding uses in technological applications in spintronics and quantum computing.
Abstract: Certain insulators have exotic metallic states on their surfaces. These states are formed by topological effects that also render the electrons travelling on such surfaces insensitive to scattering by impurities. Such topological insulators may provide new routes to generating novel phases and particles, possibly finding uses in technological applications in spintronics and quantum computing.

2,501 citations


Cites background from "Topological surface states protecte..."

  • ...Another remarkable consequence of the absence of the extra degeneracies was detected by scanning tunnelling microscopy experiment...

    [...]

Journal ArticleDOI
TL;DR: Bychkov and Rashba as discussed by the authors introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors, which has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductor devices.
Abstract: In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

1,533 citations

Journal ArticleDOI
Yoichi Ando1
TL;DR: Topological insulators represent a new quantum state of matter which is characterized by peculiar edge or surface states that show up due to a topological character of the bulk wave functions.
Abstract: Topological insulators represent a new quantum state of matter which is characterized by peculiar edge or surface states that show up due to a topological character of the bulk wave functions. This review presents a pedagogical account on topological insulator materials with an emphasis on basic theory and materials properties. After presenting a historical perspective and basic theories of topological insulators, it discusses all the topological insulator materials discovered as of May 2013, with some illustrative descriptions of the developments in materials discoveries in which the author was involved. A summary is given for possible ways to confirm the topological nature in a candidate material. Various synthesis techniques as well as the defect chemistry that are important for realizing bulk-insulating samples are discussed. Characteristic properties of topological insulators are discussed with an emphasis on transport properties. In particular, the Dirac fermion physics and the resulting peculiar qu...

1,202 citations

References
More filters
Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: In this article, the quantum spin Hall (QSH) effect can be realized in mercury-cadmium telluride semiconductor quantum wells, a state of matter with topological properties distinct from those of conventional insulators.
Abstract: We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride–cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an “inverted” type at a critical thickness d c . We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.

5,187 citations

Journal ArticleDOI
TL;DR: In this article, first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Bi2Se3, SbSe3 and BiSe3 were performed.
Abstract: Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials. First-principles calculations predict that Bi2Se3, Bi2Te3 and Sb2Te3 are topological insulators—three-dimensional semiconductors with unusual surface states generated by spin–orbit coupling—whose surface states are described by a single gapless Dirac cone. The calculations further predict that Bi2Se3 has a non-trivial energy gap larger than the energy scale kBT at room temperature.

4,982 citations

Journal ArticleDOI
TL;DR: The Z2 order of the QSH phase is established in the two band model of graphene and a generalization of the formalism applicable to multiband and interacting systems is proposed.
Abstract: The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2 topological invariant, which distinguishes it from an ordinary insulator. The Z2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multiband and interacting systems.

4,973 citations

Journal ArticleDOI
02 Nov 2007-Science
TL;DR: The quantum phase transition at the critical thickness, d = 6.3 nanometers, was independently determined from the magnetic field–induced insulator-to-metal transition, providing experimental evidence of the quantum spin Hall effect.
Abstract: Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We fabricated such sample structures with low density and high mobility in which we could tune, through an external gate voltage, the carrier conduction from n-type to p-type, passing through an insulating regime. For thin quantum wells with well width d 6.3 nanometers), the nominally insulating regime showed a plateau of residual conductance close to 2e(2)/h, where e is the electron charge and h is Planck's constant. The residual conductance was independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance was destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nanometers, was also independently determined from the magnetic field-induced insulator-to-metal transition. These observations provide experimental evidence of the quantum spin Hall effect.

4,343 citations