scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Topological synthesis of compliant mechanisms using multi-criteria optimization

01 Jun 1997-Journal of Mechanical Design (American Society of Mechanical Engineers)-Vol. 119, Iss: 2, pp 238-245
TL;DR: In this paper, a new method for topological synthesis of single-piece compliant mechanisms is presented, using a "design for required deflection" approach, which handles motion and loading requirements simultaneously for a given set of input force and output deflection specifications.
Abstract: Compliant mechanisms are mechanical devices that achieve motion via elastic deformation. A new method for topological synthesis of single-piece compliant mechanisms is presented, using a “design for required deflection” approach. A simple beam example is used to illustrate this concept and to provide the motivation for a new multi-criteria approach for compliant mechanism design. This new approach handles motion and loading requirements simultaneously for a given set of input force and output deflection specifications. Both a truss ground structure and a two-dimensional continuum are used in the implementation which is illustrated with design examples.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the material density field is filtered to enforce a length scale on the field variation and is penalized to remove less effective intermediate densities to resolve the non-existent solution to the solid void topology problem.

1,125 citations

Book
01 Jan 1999
TL;DR: 1. Preliminary concepts of one dimensional unconstrained minimization, unconstrained optimization, linear programming, and finite element based optimization are presented.
Abstract: In this revised and enhanced second edition of Optimization Concepts and Applications in Engineering, the already robust pedagogy has been enhanced with more detailed explanations, an increased number of solved examples and end-of-chapter problems. The source codes are now available free on multiple platforms. It is vitally important to meet or exceed previous quality and reliability standards while at the same time reducing resource consumption. This textbook addresses this critical imperative integrating theory, modeling, the development of numerical methods, and problem solving, thus preparing the student to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multiobjective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses and for practising engineers in all engineering disciplines, as well as in applied mathematics.

576 citations

Journal ArticleDOI
TL;DR: In this article, the use of topology optimization as a synthesis tool for the design of large-displacement compliant mechanisms is described, and an objective function for the synthesis of large displacement mechanisms is proposed together with a formulation for synthesis of path-generating compliant mechanisms.
Abstract: This paper describes the use of topology optimization as a synthesis tool for the design of large-displacement compliant mechanisms. An objective function for the synthesis of large-displacement mechanisms is proposed together with a formulation for synthesis of path-generating compliant mechanisms. The responses of the compliant mechanisms are modelled using a total Lagrangian finite element formulation, the sensitivity analysis is performed using the adjoint method and the optimization problem is solved using the method of moving asymptotes. Procedures to circumvent some numerical problems are discussed. Copyright © 2001 John Wiley & Sons, Ltd.

429 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes progress toward programming two-dimensional (2D) polymer sheets which respond to a variety of external stimuli to form 3D shapes or topographical features on macroscopically planar sheets.

296 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a methodology for optimal shape design based on homogenization, which is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i.i.
Abstract: Optimal shape design of structural elements based on boundary variations results in final designs that are topologically equivalent to the initial choice of design, and general, stable computational schemes for this approach often require some kind of remeshing of the finite element approximation of the analysis problem. This paper presents a methodology for optimal shape design where both these drawbacks can be avoided. The method is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i~otropic material, with the requirement that the resulting structure can carry the given loads as well as satisfy other design requirements. The computation of effective material properties for the anisotropic material is carried out using the method of homogenization. Computational results are presented and compared with results obtained by boundary variations.

5,858 citations

Book
31 Dec 1984
TL;DR: In this article, the authors present an approach for the optimization of structural components of a ten-bar truss and a twenty-five-bar trestle in the context of structural optimization.
Abstract: 1. Introduction.- 1.1 Function Optimization and Parameter Optimization.- 1.2 Elements of Problem Formulation.- Design Variables.- Objective Function.- Constraints.- Standard Formulation.- 1.3 The Solution Process.- 1.4 Analysis and Design Formulations.- 1.5 Specific Versus General Methods.- 1.6 Exercises.- 1.7 References.- 2. Classical Tools in Structural Optimization.- 2.1 Optimization Using Differential Calculus.- 2.2 Optimization Using Variational Calculus.- to the Calculus of Variations.- 2.3 Classical Methods for Constrained Problems.- Method of Lagrange Multipliers.- Function Subjected to an Integral Constraint.- Finite Subsidiary Conditions.- 2.4 Local Constraints and the Minmax Approach.- 2.5 Necessary and Sufficient Conditions for Optimality.- Elastic Structures of Maximum Stiffness.- Optimal Design of Euler-Bernoulli Columns.- Optimum Vibrating Euler-Bernoulli Beams.- 2.6 Use of Series Solutions in Structural Optimization.- 2.7 Exercises.- 2.8 References.- 3. Linear Programming.- 3.1 Limit Analysis and Design of Structures Formulated as LP Problems.- 3.2 Prestressed Concrete Design by Linear Programming.- 3.3 Minimum Weight Design of Statically Determinate Trusses.- 3.4 Graphical Solutions of Simple LP Problems.- 3.5 A Linear Program in a Standard Form.- Basic Solution.- 3.6 The Simplex Method.- Changing the Basis.- Improving the Objective Function.- Generating a Basic Feasible Solution-Use of Artificial Variables.- 3.7 Duality in Linear Programming.- 3.8 An Interior Method-Karmarkar's Algorithm.- Direction of Move.- Transformation of Coordinates.- Move Distance.- 3.9 Integer Linear Programming.- Branch-and-Bound Algorithm.- 3.10 Exercises.- 3.11 References.- 4. Unconstrained Optimization.- 4.1 Minimization of Functions of One Variable.- Zeroth Order Methods.- First Order Methods.- Second Order Method.- Safeguarded Polynomial Interpolation.- 4.2 Minimization of Functions of Several Variables.- Zeroth Order Methods.- First Order Methods.- Second Order Methods.- Applications to Analysis.- 4.3 Specialized Quasi-Newton Methods.- Exploiting Sparsity.- Coercion of Hessians for Suitability with Quasi-Newton Methods.- Making Quasi-Newton Methods Globally Convergent.- 4.4 Probabilistic Search Algorithms.- Simulated Annealing.- Genetic Algorithms.- 4.5 Exercises.- 4.6 References.- 5. Constrained Optimization.- 5.1 The Kuhn-Tucker Conditions.- General Case.- Convex Problems.- 5.2 Quadratic Programming Problems.- 5.3 Computing the Lagrange Multipliers.- 5.4 Sensitivity of Optimum Solution to Problem Parameters.- 5.5 Gradient Projection and Reduced Gradient Methods.- 5.6 The Feasible Directions Method.- 5.7 Penalty Function Methods.- Exterior Penalty Function.- Interior and Extended Interior Penalty Functions.- Unconstrained Minimization with Penalty Functions.- Integer Programming with Penalty Functions.- 5.8 Multiplier Methods.- 5.9 Projected Lagrangian Methods (Sequential Quadratic Prog.).- 5.10 Exercises.- 5.11 References.- 6. Aspects of the Optimization Process in Practice.- 6.1 Generic Approximations.- Local Approximations.- Global and Midrange Approximations.- 6.2 Fast Reanalysis Techniques.- Linear Static Response.- Eigenvalue Problems.- 6.3 Sequential Linear Programming.- 6.4 Sequential Nonlinear Approximate Optimization.- 6.5 Special Problems Associated with Shape Optimization.- 6.6 Optimization Packages.- 6.7 Test Problems.- Ten-Bar Truss.- Twenty-Five-Bar Truss.- Seventy-Two-Bar Truss.- 6.8 Exercises.- 6.9 References.- 7. Sensitivity of Discrete Systems.- 7.1 Finite Difference Approximations.- Accuracy and Step Size Selection.- Iterative Methods.- Effect of Derivative Magnitude on Accuracy.- 7.2 Sensitivity Derivatives of Static Displacement and Stress Constraints.- Analytical First Derivatives.- Second Derivatives.- The Semi-Analytical Method.- Nonlinear Analysis.- Sensitivity of Limit Loads.- 7.3 Sensitivity Calculations for Eigenvalue Problems.- Sensitivity Derivatives of Vibration and Buckling Constraints.- Sensitivity Derivatives for Non-Hermitian Eigenvalue Problems.- Sensitivity Derivatives for Nonlinear Eigenvalue Problems.- 7.4 Sensitivity of Constraints on Transient Response.- Equivalent Constraints.- Derivatives of Constraints.- Linear Structural Dynamics.- 7.5 Exercises.- 7.6 References.- 8. Introduction to Variational Sensitivity Analysis.- 8.1 Linear Static Analysis.- The Direct Method.- The Adjoint Method.- Implementation Notes.- 8.2 Nonlinear Static Analysis and Limit Loads.- Static Analysis.- Limit Loads.- Implementation Notes.- 8.3 Vibration and Buckling.- The Direct Method.- The Adjoint Method.- 8.4 Static Shape Sensitivity.- The Material Derivative.- Domain Parametrization.- The Direct Method.- The Adjoint Method.- 8.5 Exercise.- 8.6 References.- 9. Dual and Optimality Criteria Methods.- 9.1 Intuitive Optimality Criteria Methods.- Fully Stressed Design.- Other Intuitive Methods.- 9.2 Dual Methods.- General Formulation.- Application to Separable Problems.- Discrete Design Variables.- Application with First Order Approximations.- 9.3 Optimality Criteria Methods for a Single Constraint.- The Reciprocal Approximation for a Displacement Constraint.- A Single Displacement Constraint.- Generalization for Other Constraints.- Scaling-based Resizing.- 9.4 Several Constraints.- Reciprocal-Approximation Based Approach.- Scaling-based Approach.- Other Formulations.- 9.5 Exercises.- 9.6 References.- 10. Decomposition and Multilevel Optimization.- 10.1 The Relation between Decomposition and Multilevel Formulation.- 10.2 Decomposition.- 10.3 Coordination and Multilevel Optimization.- 10.4 Penalty and Envelope Function Approaches.- 10.5 Narrow-Tree Multilevel Problems.- Simultaneous Analysis and Design.- Other Applications.- 10.6 Decomposition in Response and Sensitivity Calculations.- 10.7 Exercises.- 10.8 References.- 11.Optimum Design of Laminated Composite Materials.- 11.1 Mechanical Response of a Laminate.- Orthotropic Lamina.- Classical Laminated Plate Theory.- Bending, Extension, and Shear Coupling.- 11.2 Laminate Design.- Design of Laminates for In-plane Response.- Design of Laminates for Flexural Response.- 11.3 Stacking Sequence Design.- Graphical Stacking Sequence Design.- Penalty Function Formulation.- Integer Linear Programming Formulation.- Probabilistic Search Methods.- 11.4 Design Applications.- Stiffened Plate Design.- Aeroelastic Tailoring.- 11.5 Design Uncertainties.- 11.6 Exercises.- 11.7 References.- Name Index.

1,944 citations

Journal ArticleDOI
TL;DR: In this article, a numerical topology optimization method is used to design and fabricate compliant micromechanisms and material structures with negative Poisson's ratio (NPR) using a laser micromachining setup.
Abstract: This paper describes a new way to design and fabricate compliant micromechanisms and material structures with negative Poisson's ratio (NPR). The design of compliant mechanisms and material structures is accomplished in an automated way using a numerical topology optimization method, The procedure allows the user to specify the elastic properties of materials or the mechanical advantages (MA's) or geometrical advantages (GA's) of compliant mechanisms and returns the optimal structures. The topologies obtained by the numerical procedure require practically no interaction by the engineer before they can be transferred to the fabrication unit. Fabrication is carried out by patterning a sputtered silicon on a plasma-enhanced chemical vapor deposition (PECVD) glass with a laser micromachining setup. Subsequently, the structures are etched into the underlying PECVD glass, and the glass is underetched, all in one two-step reactive ion etching (RIE) process. The components are tested using a probe placed on an x-y stage. This fast prototyping allows newly developed topologies to be fabricated and tested within the same day.

508 citations

Journal ArticleDOI
TL;DR: A procedure to obtain a topology of an optimal structure considering flexibility is presented, based on a mutual energy concept for formulation of flexibility and the homogenization method.
Abstract: A procedure to obtain a topology of an optimal structure considering flexibility is presented. The methodology is based on a mutual energy concept for formulation of flexibility and the homogenization method. A multi-objective optimization problem is formulated as an application of compliant mechanism design. Some examples of the design of compliant mechanisms for plane structures are presented. ( 1998 John Wiley & Sons, Ltd.

392 citations