scispace - formally typeset
Open AccessJournal ArticleDOI

TOR signaling in growth and metabolism.

Reads0
Chats0
TLDR
The physiological consequences of mammalianTORC1 dysregulation suggest that inhibitors of mammalian TOR may be useful in the treatment of cancer, cardiovascular disease, autoimmunity, and metabolic disorders.
About
This article is published in Cell.The article was published on 2006-02-10 and is currently open access. It has received 5553 citations till now. The article focuses on the topics: TOR signaling & TOR complex.

read more

Citations
More filters
Journal ArticleDOI

AKT/PKB signaling: navigating downstream.

TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.
Journal ArticleDOI

AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1

TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Journal ArticleDOI

mTOR: from growth signal integration to cancer, diabetes and ageing

TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Journal ArticleDOI

Genetic studies of body mass index yield new insights for obesity biology

TL;DR: A genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals provide strong support for a role of the central nervous system in obesity susceptibility.
Journal ArticleDOI

AMPK phosphorylation of raptor mediates a metabolic checkpoint.

TL;DR: AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor, uncovering a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.
References
More filters
Journal ArticleDOI

The phosphatidylinositol 3-Kinase AKT pathway in human cancer.

TL;DR: Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype.
PatentDOI

Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex

TL;DR: In this paper, the rictor-mTOR complex was used to identify compounds which modulate Akt activity mediated by the Rictor mTOR complex and methods for treating or preventing a disorder that is associated with aberrant Akt activation.
Journal ArticleDOI

Specificity and mechanism of action of some commonly used protein kinase inhibitors

TL;DR: The results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure, and proposes guidelines for the use of protein Kinase inhibitors in cell-based assays.
Journal ArticleDOI

Upstream and downstream of mTOR

TL;DR: Both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis are described.
Journal ArticleDOI

TSC2 mediates cellular energy response to control cell growth and survival.

TL;DR: It is described that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis.
Related Papers (5)