scispace - formally typeset
Search or ask a question
Proceedings Article

Towards Deep Learning Models Resistant to Adversarial Attacks.

TL;DR: This article studied the adversarial robustness of neural networks through the lens of robust optimization and identified methods for both training and attacking neural networks that are reliable and, in a certain sense, universal.
Abstract: Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples—inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. Code and pre-trained models are available at this https URL and this https URL.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
19 May 2019
TL;DR: This work presents the first robust and generalizable detection and mitigation system for DNN backdoor attacks, and identifies multiple mitigation techniques via input filters, neuron pruning and unlearning.
Abstract: Lack of transparency in deep neural networks (DNNs) make them susceptible to backdoor attacks, where hidden associations or triggers override normal classification to produce unexpected results. For example, a model with a backdoor always identifies a face as Bill Gates if a specific symbol is present in the input. Backdoors can stay hidden indefinitely until activated by an input, and present a serious security risk to many security or safety related applications, e.g. biometric authentication systems or self-driving cars. We present the first robust and generalizable detection and mitigation system for DNN backdoor attacks. Our techniques identify backdoors and reconstruct possible triggers. We identify multiple mitigation techniques via input filters, neuron pruning and unlearning. We demonstrate their efficacy via extensive experiments on a variety of DNNs, against two types of backdoor injection methods identified by prior work. Our techniques also prove robust against a number of variants of the backdoor attack.

929 citations

Journal ArticleDOI
TL;DR: A set of recommendations for model interpretation and benchmarking is developed, highlighting recent advances in machine learning to improve robustness and transferability from the lab to real-world applications.
Abstract: Deep learning has triggered the current rise of artificial intelligence and is the workhorse of today’s machine intelligence. Numerous success stories have rapidly spread all over science, industry and society, but its limitations have only recently come into focus. In this Perspective we seek to distil how many of deep learning’s failures can be seen as different symptoms of the same underlying problem: shortcut learning. Shortcuts are decision rules that perform well on standard benchmarks but fail to transfer to more challenging testing conditions, such as real-world scenarios. Related issues are known in comparative psychology, education and linguistics, suggesting that shortcut learning may be a common characteristic of learning systems, biological and artificial alike. Based on these observations, we develop a set of recommendations for model interpretation and benchmarking, highlighting recent advances in machine learning to improve robustness and transferability from the lab to real-world applications. Deep learning has resulted in impressive achievements, but under what circumstances does it fail, and why? The authors propose that its failures are a consequence of shortcut learning, a common characteristic across biological and artificial systems in which strategies that appear to have solved a problem fail unexpectedly under different circumstances.

924 citations

Proceedings ArticleDOI
20 May 2018
TL;DR: This work presents AI2, the first sound and scalable analyzer for deep neural networks, and introduces abstract transformers that capture the behavior of fully connected and convolutional neural network layers with rectified linear unit activations (ReLU), as well as max pooling layers.
Abstract: We present AI2, the first sound and scalable analyzer for deep neural networks. Based on overapproximation, AI2 can automatically prove safety properties (e.g., robustness) of realistic neural networks (e.g., convolutional neural networks). The key insight behind AI2 is to phrase reasoning about safety and robustness of neural networks in terms of classic abstract interpretation, enabling us to leverage decades of advances in that area. Concretely, we introduce abstract transformers that capture the behavior of fully connected and convolutional neural network layers with rectified linear unit activations (ReLU), as well as max pooling layers. This allows us to handle real-world neural networks, which are often built out of those types of layers. We present a complete implementation of AI2 together with an extensive evaluation on 20 neural networks. Our results demonstrate that: (i) AI2 is precise enough to prove useful specifications (e.g., robustness), (ii) AI2 can be used to certify the effectiveness of state-of-the-art defenses for neural networks, (iii) AI2 is significantly faster than existing analyzers based on symbolic analysis, which often take hours to verify simple fully connected networks, and (iv) AI2 can handle deep convolutional networks, which are beyond the reach of existing methods.

841 citations

Proceedings ArticleDOI
24 May 2018
TL;DR: A white-box iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end has a 100% success rate, and the feasibility of this attack introduce a new domain to study adversarial examples.
Abstract: We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (recognizing up to 50 characters per second of audio). We apply our white-box iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.

837 citations

Proceedings ArticleDOI
TL;DR: Zeroth order optimization (ZOO) as discussed by the authors was proposed to estimate the gradients of the target DNN for generating adversarial examples, which was shown to be as effective as the state-of-the-art white-box attack.
Abstract: Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs. Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to efficiently attack black-box models. By exploiting zeroth order optimization, improved attacks to the targeted DNN can be accomplished, sparing the need for training substitute models and avoiding the loss in attack transferability. Experimental results on MNIST, CIFAR10 and ImageNet show that the proposed ZOO attack is as effective as the state-of-the-art white-box attack and significantly outperforms existing black-box attacks via substitute models.

770 citations