scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging.

TL;DR: In this paper, the authors present a review of the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches.
About: This article is published in Journal of Neuroscience Methods.The article was published on 2021-01-15 and is currently open access. It has received 38 citations till now. The article focuses on the topics: Diffusion MRI.
Citations
More filters
Journal ArticleDOI
18 Jun 2021-Science
TL;DR: In this article, the authors identified common genetic variants influencing white matter microstructure using diffusion magnetic resonance imaging of 43,802 individuals and identified 109 associated loci, 30 of which were detected by tract-specific functional principal components analysis.
Abstract: Brain regions communicate with each other through tracts of myelinated axons, commonly referred to as white matter. We identified common genetic variants influencing white matter microstructure using diffusion magnetic resonance imaging of 43,802 individuals. Genome-wide association analysis identified 109 associated loci, 30 of which were detected by tract-specific functional principal components analysis. A number of loci colocalized with brain diseases, such as glioma and stroke. Genetic correlations were observed between white matter microstructure and 57 complex traits and diseases. Common variants associated with white matter microstructure altered the function of regulatory elements in glial cells, particularly oligodendrocytes. This large-scale tract-specific study advances the understanding of the genetic architecture of white matter and its genetic links to a wide spectrum of clinical outcomes.

69 citations

Posted ContentDOI
17 Jun 2020-bioRxiv
TL;DR: This large-scale tract-specific study provides a big step forward in understanding the genetic architecture of white matter and its genetic links to a wide spectrum of clinical outcomes.
Abstract: Brain regions communicate with each other via tracts of myelinated axons, commonly referred to as white matter. White matter microstructure can be measured in the living human brain using diffusion based magnetic resonance imaging (dMRI), and has been found to be altered in patients with neuropsychiatric disorders. Although under strong genetic control, few genetic variants influencing white matter microstructure have ever been identified. Here we identified common genetic variants influencing white matter microstructure using dMRI in 42,919 individuals (35,741 in the UK Biobank). The dMRIs were summarized into 215 white matter microstructure traits, including 105 measures from tract-specific functional principal component analysis. Genome-wide association analysis identified many novel white matter microstructure associated loci (P

66 citations

Journal ArticleDOI
TL;DR: In this article , the authors discuss methods for validating the various features of connectional anatomy that are extracted from diffusion MRI, both at the macro-scale (trajectories of axon bundles) and at microscale (axonal orientations and other microstructural properties) and present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label free optical imaging techniques, and others.

22 citations

Journal ArticleDOI
TL;DR: The present findings suggest that individual differences in language processing and learning can be explained, in part, byindividual differences in the brain’s white matter structure.
Abstract: Individual differences in the ability to deal with language have long been discussed. The neural basis of these, however, is yet unknown. Here we investigated the relationship between long-range white matter connectivity of the brain, as revealed by diffusion tractography, and the ability to process syntactically complex sentences in the participants’ native language as well as the improvement thereof by multi-day training. We identified specific network motifs that indeed related white matter tractography to individual language processing performance. First, for two such motifs, one in the left and one in the right hemisphere, their individual prevalence significantly predicted the individual language performance suggesting a predisposition for the individual ability to process syntactically complex sentences, which manifests itself in the white matter brain structure. Both motifs comprise a number of cortical regions, but seem to be dominated by areas known for the involvement in working memory rather than the classical language network itself. Second, we identified another left hemispheric network motif, whose change of prevalence over the training period significantly correlated with the individual change in performance, thus reflecting training induced white matter plasticity. This motif comprises diverse cortical areas including regions known for their involvement in language processing, working memory and motor functions. The present findings suggest that individual differences in language processing and learning can be explained, in part, by individual differences in the brain’s white matter structure. Brain structure may be a crucial factor to be considered when discussing variations in human cognitive performance, more generally.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.

43,884 citations

Journal Article

17,468 citations

Journal ArticleDOI
TL;DR: In this article, a derivation of the effect of a time-dependent magnetic field gradient on the spin-echo experiment, particularly in the presence of spin diffusion, is given.
Abstract: A derivation is given of the effect of a time‐dependent magnetic field gradient on the spin‐echo experiment, particularly in the presence of spin diffusion. There are several reasons for preferring certain kinds of time‐dependent magnetic field gradients to the more usual steady gradient. If the gradient is reduced during the rf pulses, H1 need not be particularly large; if the gradient is small at the time of the echo, the echo will be broad and its amplitude easy to measure. Both of these relaxations of restrictions on the measurement of diffusion coefficients by the spin‐echo technique serve to extend its range of applicability. Furthermore, a pulsed gradient can be recommended when it is critical to define the precise time period over which diffusion is being measured.The theoretical expression derived has been verified experimentally for several choices of time dependent magnetic field gradient. An apparatus is described suitable for the production of pulsed gradients with amplitudes as large as 100 ...

7,781 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres.
Abstract: Anisotropic water diffusion in neural fibres such as nerve, white matter in spinal cord, or white matter in brain forms the basis for the utilization of diffusion tensor imaging (DTI) to track fibre pathways. The fact that water diffusion is sensitive to the underlying tissue microstructure provides a unique method of assessing the orientation and integrity of these neural fibres, which may be useful in assessing a number of neurological disorders. The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres. The emphasis of the review will be on model neurological systems both in vitro and in vivo. A systematic discussion of the possible sources of anisotropy and their evaluation will be presented followed by an overview of various studies of restricted diffusion and compartmentation as they relate to anisotropy. Pertinent pathological models, developmental studies and theoretical analyses provide further insight into the basis of anisotropic diffusion and its potential utility in the nervous system.

4,216 citations

Journal ArticleDOI
TL;DR: NODDI provides sensible neurite density and orientation dispersion estimates, thereby disentangling two key contributing factors to FA and enabling the analysis of each factor individually, and demonstrates the feasibility of NODDI even for the most time-sensitive clinical applications, such as neonatal and dementia imaging.

2,354 citations

Related Papers (5)
Trending Questions (1)
What is g-ratio in myelin?

The paper does not provide a direct definition of the g-ratio in myelin.