scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Towards Obfuscated Malware Detection for Low Powered IoT Devices

01 Dec 2020-pp 1073-1080
TL;DR: In this paper, the authors propose using and extracting features from Markov matrices constructed from opcode traces as a low cost feature for unobfuscated and obfuscated malware detection.
Abstract: With the increased deployment of IoT and edge devices into commercial and user networks, these devices have become a new threat vector for malware authors. It is imperative to protect these devices as they become more prevalent in commercial and personal networks. However, due to their limited computational power and storage space, especially in the case of battery-powered devices, it is infeasible to deploy state-of-the-art malware detectors onto these systems. In this work, we propose using and extracting features from Markov matrices constructed from opcode traces as a low cost feature for unobfuscated and obfuscated malware detection. We empirically show that our approach maintains a high detection rate while consuming less power than similar work.
Citations
More filters
Journal ArticleDOI
01 Mar 2023-Sensors
TL;DR: Wang et al. as mentioned in this paper proposed an IoT malware detection approach based on PaaS (Platform as a Service), which detects cross-architecture IoT malware by intercepting system calls generated by virtual machines in the host operating system acting as dynamic features and using the K Nearest Neighbors (KNN) classification model.
Abstract: With the development of internet technology, the Internet of Things (IoT) has been widely used in several aspects of human life. However, IoT devices are becoming more vulnerable to malware attacks due to their limited computational resources and the manufacturers’ inability to update the firmware on time. As IoT devices are increasing rapidly, their security must classify malicious software accurately; however, current IoT malware classification methods cannot detect cross-architecture IoT malware using system calls in a particular operating system as the only class of dynamic features. To address these issues, this paper proposes an IoT malware detection approach based on PaaS (Platform as a Service), which detects cross-architecture IoT malware by intercepting system calls generated by virtual machines in the host operating system acting as dynamic features and using the K Nearest Neighbors (KNN) classification model. A comprehensive evaluation using a 1719 sample dataset containing ARM and X86-32 architectures demonstrated that MDABP achieves 97.18% average accuracy and a 99.01% recall rate in detecting samples in an Executable and Linkable Format (ELF). Compared with the best cross-architecture detection method that uses network traffic as a unique type of dynamic feature with an accuracy of 94.5%, practical results reveal that our method uses fewer features and has higher accuracy.
References
More filters
01 Jan 2008
TL;DR: Some of the recent work studying synchronization of coupled oscillators is discussed to demonstrate how NetworkX enables research in the field of computational networks.
Abstract: NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self-loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility makes NetworkX ideal for representing networks found in many dierent scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for easy exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdos-Renyi, Small World, and Barabasi-Albert models. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

3,741 citations

Journal ArticleDOI
TL;DR: A new concept, that of INdependent Components Analysis (INCA), more powerful than the classical Principal components Analysis (in decision tasks) emerges from this work.
Abstract: The separation of independent sources from an array of sensors is a classical but difficult problem in signal processing. Based on some biological observations, an adaptive algorithm is proposed to separate simultaneously all the unknown independent sources. The adaptive rule, which constitutes an independence test using non-linear functions, is the main original point of this blind identification procedure. Moreover, a new concept, that of INdependent Components Analysis (INCA), more powerful than the classical Principal Components Analysis (in decision tasks) emerges from this work.

2,583 citations

Proceedings ArticleDOI
01 Jan 2014
TL;DR: DREBIN is proposed, a lightweight method for detection of Android malware that enables identifying malicious applications directly on the smartphone and outperforms several related approaches and detects 94% of the malware with few false alarms.
Abstract: Malicious applications pose a threat to the security of the Android platform. The growing amount and diversity of these applications render conventional defenses largely ineffective and thus Android smartphones often remain unprotected from novel malware. In this paper, we propose DREBIN, a lightweight method for detection of Android malware that enables identifying malicious applications directly on the smartphone. As the limited resources impede monitoring applications at run-time, DREBIN performs a broad static analysis, gathering as many features of an application as possible. These features are embedded in a joint vector space, such that typical patterns indicative for malware can be automatically identified and used for explaining the decisions of our method. In an evaluation with 123,453 applications and 5,560 malware samples DREBIN outperforms several related approaches and detects 94% of the malware with few false alarms, where the explanations provided for each detection reveal relevant properties of the detected malware. On five popular smartphones, the method requires 10 seconds for an analysis on average, rendering it suitable for checking downloaded applications directly on the device.

1,905 citations

Journal ArticleDOI
TL;DR: The Mirai botnet and its variants and imitators are a wake-up call to the industry to better secure Internet of Things devices or risk exposing the Internet infrastructure to increasingly disruptive distributed denial-of-service attacks.
Abstract: The Mirai botnet and its variants and imitators are a wake-up call to the industry to better secure Internet of Things devices or risk exposing the Internet infrastructure to increasingly disruptive distributed denial-of-service attacks.

1,391 citations

01 Jul 1997
TL;DR: It is argued that automatic code obfuscation is currently the most viable method for preventing reverse engineering and the design of a code obfuscator is described, a tool which converts a program into an equivalent one that is more diicult to understand and reverse engineer.
Abstract: It has become more and more common to distribute software in forms that retain most or all of the information present in the original source code. An important example is Java bytecode. Since such codes are easy to decompile, they increase the risk of malicious reverse engineering attacks. In this paper we review several techniques for technical protection of software secrets. We will argue that automatic code obfuscation is currently the most viable method for preventing reverse engineering. We then describe the design of a code obfuscator, a tool which converts a program into an equivalent one that is more diicult to understand and reverse engineer. The obfuscator is based on the application of code transformations, in many cases similar to those used by compiler optimizers. We describe a large number of such transformations, classify them, and evaluate them with respect to their potency (To what degree is a human reader confused?), resilience (How well are automatic deobfuscation attacks resisted?), and cost (How much overhead is added to the application?). We nally discuss some possible deobfuscation techniques (such as program slicing) and possible countermeasures an obfuscator could employ against them.

1,019 citations