scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Towards RGB photoelasticity: Full-field automated photoelasticity in white light

01 Sep 1995-Experimental Mechanics (Kluwer Academic Publishers)-Vol. 35, Iss: 3, pp 193-200
TL;DR: A new full-field method for the automatic analysis of isochromatic fringes in white light, named RGB photoelasticity, which makes it possible to determine retardations uniquely in the range of 0–3 fringe orders.
Abstract: In this paper a new full-field method for the automatic analysis of isochromatic fringes in white light is presented. The method, named RGB photoelasticity, eliminates the typical drawbacks of the classical approach to photoelasticity in white light which requires a subjective analysis of colors and an experienced analyst to acquire and interpret the results.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a unified hybrid experimental/numerical approach to digital photoelasticity has been developed, which consists of an automated polariscope with image capture facilities together with a suite of dedicated software for setting up and controlling the polarisope, for extracting and unwrapping the isoclinic and isochromatic data, for constructing a boundary element (BE) model congruent with the edges of the specimen on the photo-elastic images, and for obtaining separated stresses and boundary conditions such as contact stresses via an inverse BE technique.
Abstract: A unified, hybrid experimental/numerical approach to digital photoelasticity has been developed. The system consists of an automated polariscope with image capture facilities together with a suite of dedicated software for setting up and controlling the polariscope, for extracting and unwrapping the isoclinic and isochromatic data, for constructing a boundary element (BE) model congruent with the edges of the specimen on the photoelastic images, and for obtaining separated stresses and boundary conditions such as contact stresses via an inverse BE technique. In this paper, the integration of the various techniques is described and illustrated using typical results.

1 citations

Proceedings ArticleDOI
04 Dec 2009
TL;DR: In this paper, stress frozen 3D models are sliced mechanically and the whole field principal stress differences (Isochromatics) and principal stress directions (Isoclinics) are evaluated by capturing only five images using the standard optical arrangements of a conventional polariscope.
Abstract: Digital photoelasticity is a whole field experimental technique which can analyze both 2-D and 3-D models. In this paper, stress frozen 3-D models are sliced mechanically and the whole field principal stress differences (Isochromatics) and principal stress directions (Isoclinics) are evaluated by capturing only five images using the standard optical arrangements of a conventional polariscope. The wrapped isoclinic values obtained by processing the first four colour polarization stepped images in the range -π/4 to +π/4 are unwrapped using adaptive quality guided phase unwrapping algorithm to get isoclinics in the range of -π/2 to +π/2. The total fringe order is evaluated by three fringe photoelasticity or RGB photoelasticity with its latest developments like colour adaptation combined with refined three fringe photoelasticity. The methodology is validated for two slices cut from aero-structural components.

1 citations

Journal ArticleDOI
Toshiki Kihara1
TL;DR: In this paper, the applied stresses and residual stresses on the residual stress model can be obtained by measuring two resultant stresses generated by applying loads of two different magnitudes, and the residual stresses need not be obtained from the residual stressed model before applying a load.
Abstract: Applied stresses on a residual stress model have previously been obtained by measuring the residual stresses and the resultant stresses generated by applying a load. The present paper reports that the applied stresses and the residual stresses on the residual stress model can be obtained by measuring two resultant stresses generated by applying loads of two different magnitudes. In the proposed method, the residual stresses need not be obtained from the residual stress model before applying a load. The residual stress model used to test the proposed method is a circular disk with frozen stresses that is subjected to a diametral compressive load at a certain angle. The applied stresses and the residual stresses on a residual stress model were experimentally and precisely obtained by digital photoelasticity using linearly polarized light.

1 citations

01 Jan 2000
TL;DR: Ajovalasit et al. as discussed by the authors proposed a method to calculate the phase d, and thus optical retardance, from combining measurements of jsin dj at different wavelengths.
Abstract: Summary Modulation techniques for measuring changes in optical birefringence, such as the rotating-polariser method (Wood & Glazer, 1980, J. Appl. Crystallogr. 13, 217), allow one to determine jsin dj, d o 2pLDn/l, Dn o double refraction, L o light path and l o wavelength. However, they generally suffer from not providing absolute values of the optical retardance or are limited to relatively low retardance values. In addition, knowledge of the absolute phase is required when establishing the correct values of optical orientation information. In this paper, it is shown how the phase d, and thus optical retardance, can be extracted from combining measurements of jsin dj at different wavelengths. The new approach works on each single point of a 2-D picture without the need to correlate with neighbouring points. There is virtually no limit to the retardance, and the computational efforts are small compared with other methods (e.g. Ajovalasit et al. 1998, J. Strain Analysis 33, 75). When used with imaging techniques, such as the rotating polariser method of Glazer, Lewis & Kaminsky 1996 (Proc. R. Soc. London Series A452, 2751) this process has the potential to identify automatically optically anisotropic substances under the microscope. The algorithm derived in this paper is valid not only for birefringence studies, but can be applied to all studies of interfering light waves.

1 citations

Proceedings ArticleDOI
Daichi Yamada1, Simon Hori1, Chiemi Oka1, Junpei Sakurai1, Seiichi Hata1 
01 Dec 2019
TL;DR: A catheter surgery simulator that visualizes the stress applied to the blood vessel wall in realtime using photoelasticity is proposed and it is verified that the application to a surgery simulator is possible by this image processing program.
Abstract: In recent years, minimally invasive treatment aimed at reducing the physical and mental burden of patients as well as treating diseases has attracted attention. Catheter surgery is one of the minimally invasive treatments. This surgical technique can reduce invasion compared to incision and replacement with artificial vessels. Furthermore, it is known to be superior in terms of safety. On the other hand, in catheter surgery, visual information is limited to only a two-dimensional image by an X-ray camera. Therefore, there is a problem that stress is applied to the blood vessel wall and it is damaged, so doctors are required the skill of catheter surgery. This study is proposed a catheter surgery simulator that visualizes the stress applied to the blood vessel wall in realtime using photoelasticity. The blood vessel model used for the surgery simulator focused on PVA hydrogel. Previous experiments by our group have shown that PVA hydrogel can be applied to a surgical simulator. This study has developed an image processing program to measure stress in real-time. It has verified that the application to a surgery simulator is possible by this image processing program.

1 citations

References
More filters
Book
01 Jan 1987
TL;DR: The "Handbook on Experimental Mechanics" as mentioned in this paper is a comprehensive reference in the field of experimental mechanics and has been used extensively in the past 50 years for a wide range of applications.
Abstract: The "Handbook on Experimental Mechanics" is a comprehensive reference in the field. Since 1950, new experimental techniques, such as holography, laser speckle interferometry, optical heterodyning and modal analysis, have emerged as practical tools in the broader field of experimental mechanics. The emergence of new materials and new disciplines, such as composite materials and fracture mechanics, resulted in the evolution of traditional experimental techniques to new fields such as orthotropic photoelasticity and experimental fracture techniques. The new revised edition of the handbook includes, among other things, one new chapter on digital image processing; key sections of the handbook have been entirely rewritted or updated. The handbook should be useful to any mechanical engineer or anyone interested in stress analysis of materials.

504 citations

Journal ArticleDOI
01 May 1991-Strain
TL;DR: The design of a automated system for photoelastic analysis of complex components and the potential of the system for providing detailed data over the full field of view is demonstrated by the analysis of a slice from a model of a bolt.
Abstract: The design of a automated system for photoelastic analysis of complex components is described, and an outline of the theory used in its operation is given. The potential of the system for providing detailed data over the full field of view is demonstrated by the analysis of a slice from a model of a bolt.

221 citations

Journal ArticleDOI
TL;DR: In this paper, the half-fringe photoelasticity (HFP) method is proposed for whole-field stress analysis based on a symbiosis of two techniques, namely classical photo elasticity and modern digital image analysis.
Abstract: This paper presents a new method for whole-field stress analysis based on a symbiosis of two techniques—classical photoelasticity and modern digital image analysis. The resulting method is called ‘half-fringe photoelasticity (HFP)’. Classical photoelasticity demands materials with high birefringence, which leads to extensive use of plastics as model materials. Since the behavior of these materials is often different from that of the prototype materials, their use distorts the similitude relationships. In many contemporary problems this distortion is untenable. HFP offers a way out of this dilemma. It permits materials and loads to be chosen so that no more than one half of a fringe order appears in the area of interest. Thus, for example, glass, which behaves linearly up to high stress levels and over a wide range of temperatures, could be used as model material. Alternatively, models from polymeric materials could be used under very low load in order to stay within the linear part of the stress-strain diagram and to prevent large deformations. The half-fringe-photoelasticity system, which is described here, utilizes the resulting low levels of birefringence for effective stress analysis. This paper describes the system. It outlines a calibration routine and illustrates its application to two simple problems using glass models.

126 citations


"Towards RGB photoelasticity: Full-f..." refers background or methods in this paper

  • ...The intensity eqs ( 9 ) and (10) can be used to evaluate A only if the Fi functions, the transfer function of the digital board (relationship between the RGB values and intensity values L Ig and Ib), the dispersion of birefringence and the isoclinic angle ~ are known....

    [...]

  • ...The equations of polariscope ( 9 ) and (10) show that the influence of errors e of optical retarders depends on the isoclinic angle cx; there is maximum error where c~ = 0 deg (principal stresses parallel to polarizers), whereas no error occurs where a -- 45 deg (principal stresses parallel to retarders)....

    [...]

  • ...For lower orders, using eqs ( 9 ) and (10) allows us to evaluate the unknown retardation A (or 8) by processing of the acquired RGB levels....

    [...]

Book ChapterDOI
01 Jan 1986
TL;DR: In the following a method is proposed, which enables the complete extraction of photoelastic information at local picture elements (pixel) from series of related images of the same stress state, and was modified to meet the special requirements ofphotoelastic patterns.
Abstract: Computer-aided methods for evaluation of photoelastic patterns use video technique and digital image processing. They are based on localization of fringe centers [ 1, 2, 3, 4]. Neighbourhood operations are needed to reduce the influence of nonuniform illumination, inhomogeneous optical components and models, etc. Fractional orders of the relative retardation and of the isoclinic parameter at points between the fringes are computed by spline- functions, if the components of the plane stress state have to be derived from photoelastic data. In the following a method is proposed, which enables the complete extraction of photoelastic information at local picture elements (pixel) from series of related images of the same stress state. For this purpose the well-established phase-shifting technique (see e. g. [ 5,6]) was modified to meet the special requirements of photoelastic patterns.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a new method of photoelastic measurement has been developed, where the light emerging from a polariscope is spectrally separated and projected on a photodiode array.
Abstract: A new method of photoelastic measurement has been developed. The light emerging from a polariscope is spectrally separated and projected on a photodiode array. It is shown that the relative retardation can be retrieved from light intensity measured at several wavelengths. Key parameters affecting the precision of this approach are discussed and evaluated.

76 citations