scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Toxoplasma Effectors Targeting Host Signaling and Transcription

01 Jul 2017-Clinical Microbiology Reviews (American Society for Microbiology)-Vol. 30, Iss: 3, pp 615-645
TL;DR: These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.
Abstract: SUMMARY Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work determines the steady-state subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.

158 citations


Cites background from "Toxoplasma Effectors Targeting Host..."

  • ...In doing so, they often interfere with host control of defense and metabolism, cause reorganization of the host organelle positions and associations, change the mechanical properties of the host cell, and alter how infected cells interact with other host cells and tissues (Davies et al., 2020; Hakimi et al., 2017; Pernas et al., 2014; Soni et al., 2016)....

    [...]

Journal ArticleDOI
TL;DR: Using tools they recently developed to genetically engineer Cryptosporidium, the authors define life cycle stage-specific markers and generate reporter parasites, making life cycle progression and parasite sex tractable.
Abstract: The apicomplexan parasite Cryptosporidium is a leading global cause of severe diarrhoeal disease and an important contributor to early childhood mortality. Currently, there are no fully effective treatments or vaccines available. Parasite transmission occurs through ingestion of oocysts, through either direct contact or consumption of contaminated water or food. Oocysts are meiotic spores and the product of parasite sex. Cryptosporidium has a single-host life cycle in which both asexual and sexual processes occur in the intestine of infected hosts. Here, we genetically engineered strains of Cryptosporidium to make life cycle progression and parasite sex tractable. We derive reporter strains to follow parasite development in culture and in infected mice and define the genes that orchestrate sex and oocyst formation through mRNA sequencing of sorted cells. After 2 d, parasites in cell culture show pronounced sexualization, but productive fertilization does not occur and infection falters. By contrast, in infected mice, male gametes successfully fertilize female parasites, which leads to meiotic division and sporulation. To rigorously test for fertilization, we devised a two-component genetic-crossing assay using a reporter that is activated by Cre recombinase. Our findings suggest obligate developmental progression towards sex in Cryptosporidium, which has important implications for the treatment and prevention of the infection. Infection with Cryptosporidium parvum is a leading cause of severe diarrhoeal disease and childhood mortality worldwide. Using tools they recently developed to genetically engineer Cryptosporidium, the authors define life cycle stage-specific markers and generate reporter parasites, making life cycle progression and parasite sex tractable.

89 citations

Journal ArticleDOI
TL;DR: An overview of the current understanding of the host immune response to T. gondii infection is provided and the key limitations for the development of an effective, safe, and durable toxoplasmosis vaccine are summarized.

78 citations

Journal ArticleDOI
TL;DR: A novel complex at the PVM that is essential for effector translocation into the host cell is revealed, and fusing intrinsically disordered effectors to a structured DHFR domain blocks the transport of other effectors, consistent with a translocon-based model of effector transport.
Abstract: Toxoplasma gondii is an obligate intracellular parasite that can infect virtually all nucleated cells in warm-blooded animals. The ability of Toxoplasma tachyzoites to infect and successfully manipulate its host is dependent on its ability to transport “GRA” proteins that originate in unique secretory organelles called dense granules into the host cell in which they reside. GRAs have diverse roles in Toxoplasma’s intracellular lifecycle, including co-opting crucial host cell functions and proteins, such as the cell cycle, c-Myc and p38 MAP kinase. Some of these GRA proteins, such as GRA16 and GRA24, are secreted into the parasitophorous vacuole (PV) within which Toxoplasma replicates and are transported across the PV membrane (PVM) into the host cell, but the translocation process and its machinery are not well understood. We previously showed that TgMYR1, which is cleaved by TgASP5 into two fragments, localizes to the PVM and is essential for GRA transport into the host cell. To identify additional proteins necessary for effector transport, we screened Toxoplasma mutants defective in c-Myc up-regulation for their ability to export GRA16 and GRA24 to the host cell nucleus. Here we report that novel proteins MYR2 and MYR3 play a crucial role in translocation of a subset of GRAs into the host cell. MYR2 and MYR3 are secreted into the PV space and co-localize with PV membranes and MYR1. Consistent with their predicted transmembrane domains, all three proteins are membrane-associated, and MYR3, but not MYR2, stably associates with MYR1, whose N- and C-terminal fragments are disulfide-linked. We further show that fusing intrinsically disordered effectors to a structured DHFR domain blocks the transport of other effectors, consistent with a translocon-based model of effector transport. Overall, these results reveal a novel complex at the PVM that is essential for effector translocation into the host cell.

76 citations

Journal ArticleDOI
TL;DR: Sibley et al. as discussed by the authors explored the interaction between host immune defences and parasite virulence factors with emphasis on bradyzoite differentiation and survival of T. gondii within the CNS.
Abstract: Toxoplasma gondii is a parasite that infects a wide range of animals and causes zoonotic infections in humans. Although it normally only results in mild illness in healthy individuals, toxoplasmosis is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system. In the acute phase of infection, interferon-dependent immune responses control rapid parasite expansion and mitigate acute disease symptoms. However, after dissemination the parasite differentiates into semi-dormant cysts that form within muscle cells and neurons, where they persist for life in the infected host. Control of infection in the central nervous system, a compartment of immune privilege, relies on modified immune responses that aim to balance infection control while limiting potential damage due to inflammation. In response to the activation of interferon-mediated pathways, the parasite deploys an array of effector proteins to escape immune clearance and ensure latent survival. Although these pathways are best studied in the laboratory mouse, emerging evidence points to unique mechanisms of control in human toxoplasmosis. In this Review, we explore some of these recent findings that extend our understanding for proliferation, establishment and control of toxoplasmosis in humans. Toxoplasmosis caused by the parasite Toxoplasma gondii is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system (CNS). In this Review, Sibley and colleagues explore the interaction between host immune defences and parasite virulence factors with emphasis on bradyzoite differentiation and survival of T. gondii within the CNS.

74 citations

References
More filters
Journal ArticleDOI
03 Jun 1994-Science
TL;DR: A previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that phosphorylate substrate proteins called STATs (signal transducers and activators of transcription).
Abstract: Through the study of transcriptional activation in response to interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma), a previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that then phosphorylate substrate proteins called STATs (signal transducers and activators of transcription). The phosphorylated STAT proteins move to the nucleus, bind specific DNA elements, and direct transcription. Recognition of the molecules involved in the IFN-alpha and IFN-gamma pathway has led to discoveries that a number of STAT family members exist and that other polypeptide ligands also use the Jak-STAT molecules in signal transduction.

5,746 citations

Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: A crucial role is revealed for the autophagy pathway and proteins in immunity and inflammation, and they balance the beneficial and detrimental effects of immunity andinflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.
Abstract: Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy - the 'autophagy proteins' - orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.

2,757 citations


"Toxoplasma Effectors Targeting Host..." refers background in this paper

  • ...the recruitment of LC3 (205), a canonical early marker for autophagosomes (206)....

    [...]

Journal ArticleDOI
TL;DR: This review will examine how two receptor associated tyrosine kinases from the JAK family mediate the transduction of signal directly from receptor to nucleus.
Abstract: Cytokines and growth factors regulate multiple aspects of cell growth through their interactions with specific receptors. These receptors initiate signals directed at both the cytoplasmic and the nuclear compartments. Many of the nuclear signals culminate in the induction of new genes. Characterization of the ability of IFN-alpha to rapidly induce new genes has led to the identification of a new signaling paradigm, the JAK-STAT (Signal Transducers and Activators of Transcription) pathway. In the IFN-alpha pathway, two receptor associated tyrosine kinases from the JAK family, Jak1 and Tyk2, mediate the activation of two latent cytoplasmic transcription factors, Stat1 and Stat2. More recent studies have not only determined that this pathway is used extensively, but have led to the identification of additional components (e.g., Jak2, Jak3, Stat3, Stat4, Stat5, and Stat6). This review will examine how these components mediate the transduction of signal directly from receptor to nucleus.

1,878 citations

01 Jan 2009

1,793 citations


"Toxoplasma Effectors Targeting Host..." refers background in this paper

  • ...Toxoplasma gondii is a widespread parasite that infects many species of animals, including mammals, marsupials, and birds (1)....

    [...]

Journal ArticleDOI
TL;DR: It was evident that multiple mechanistic steps lead to the stable heritance of the epigenetic phenotype.
Abstract: A recent meeting (December 2008) regarding chromatin-based epigenetics was hosted by the Banbury Conference Center and Cold Spring Harbor Laboratory. The intent was to discuss aspects of epigenetic control of genomic function, and to arrive at a consensus definition of "epigenetics" to be considered by the broader community. It was evident that multiple mechanistic steps lead to the stable heritance of the epigenetic phenotype. Below we provide our view and interpretation of the proceedings at the meeting.

1,640 citations

Related Papers (5)