scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tracing the thermal behavior of ICs

01 Apr 1998-IEEE Design & Test of Computers (IEEE Computer Society)-Vol. 15, Iss: 2, pp 14-21
TL;DR: Today's increased power and packaging densities demand designers' attention to the effects of heat on ICs, and the concept and techniques of design for thermal testability are reviewed.
Abstract: Today's increased power and packaging densities demand designers' attention to the effects of heat on ICs. The authors review thermal and electrothermal simulation and measurement methods, thermal package characterization, and the concept and techniques of design for thermal testability.
Citations
More filters
Book
01 Jan 2008
TL;DR: In this article, the first book on 3D integrated circuit design, covering all of the technological and design aspects of this emerging design paradigm, while proposing effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits.
Abstract: With vastly increased complexity and functionality in the "nanometer era" (i.e. hundreds of millions of transistors on one chip), increasing the performance of integrated circuits has become a challenging task. This is due primarily to the inevitable increase in the distance among circuit elements and interconnect design solutions have become the greatest determining factor in overall performance. Three-dimensional (3D) integrated circuits (ICs), which contain multiple layers of active devices, have the potential to enhance dramatically chip performance and functionality, while reducing the distance among devices on a chip. They promise solutions to the current "interconnect bottleneck" challenges faced by IC designers. They also may facilitate the integration of heterogeneous materials, devices, and signals. However, before these advantages can be realized, key technology challenges of 3D ICs must be addressed. This is the first book on 3-D integrated circuit design, covering all of the technological and design aspects of this emerging design paradigm, while proposing effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. A handy, comprehensive reference or a practical design guide, this book provides a sound foundation for the design of three-dimensional integrated circuits. * Demonstrates how to overcome "Interconnect Bottleneck" with 3D Integrated Circuit Design...leading edge design techniques offer solutions to problems (performance/power consumption/price) faced by all circuit designers. * The FIRST book on 3D Integrated Circuit Design...provides up-to-date information that is otherwise difficult to find; * Focuses on design issues key to the product development cyle...good design plays a major role in exploiting the implementation flexibilities offered in the third dimension; * Provides broad coverage of 3D IC Design, including Interconnect Prediction Models, Thermal Management Techniques, and Timing Optimization...offers practical view of designing 3D circuits.

289 citations

Journal ArticleDOI
TL;DR: An efficient 3-D transient thermal simulator based on the alternating direction implicit (ADI) method for temperature estimation in a3-D environment, which not only has a linear runtime and memory requirement, but also is unconditionally stable.
Abstract: Recent study shows that the nonuniform thermal distribution not only has an impact on the substrate but also interconnects. Hence, three-dimensional (3-D) thermal analysis is crucial to analyze these effects. In this paper, the authors present and develop an efficient 3-D transient thermal simulator based on the alternating direction implicit (ADI) method for temperature estimation in a 3-D environment. Their simulator, 3D Thermal-ADI, not only has a linear runtime and memory requirement, but also is unconditionally stable. Detailed analysis of the 3-D nonhomogeneous cases and boundary conditions for on-chip VLSI applications are introduced and presented. Extensive experimental results show that our algorithm is not only orders of magnitude faster than the traditional thermal simulation algorithms but also highly accurate and memory efficient. The temperature profile of steady state can also be reached in several iterations. This software will be released via the web for public usage.

221 citations


Cites background from "Tracing the thermal behavior of ICs..."

  • ...A comprehensive analysis of the thermal effects in high-performance VLSI has been discussed recently [1]–[4]....

    [...]

Journal ArticleDOI
TL;DR: Thermal vias are assigned to specific areas of a 3-D IC and used to adjust their effective-thermal conductivities, and the method efficiently achieves its thermal objective while minimizing the thermal-via utilization.
Abstract: As thermal problems become more evident, new physical design paradigms and tools are needed to alleviate them. Incorporating thermal vias into integrated circuits (ICs) is a promising way of mitigating thermal issues by lowering the effective-thermal resistance of the chip. However, thermal vias take up valuable routing space, and therefore, algorithms are needed to minimize their usage while placing them in areas where they would make the greatest impact. With the developing technology of three-dimensional integrated circuits (3-D ICs), thermal problems are expected to be more prominent, and thermal vias can have a larger impact on them than in traditional two-dimensional integrated circuits (2-D ICs). In this paper, thermal vias are assigned to specific areas of a 3-D IC and used to adjust their effective-thermal conductivities. The method, which uses finite-element analysis (FEA) to calculate temperatures quickly during each iteration, makes iterative adjustments to these thermal conductivities in order to achieve a desired thermal objective and is general enough to handle a number of different thermal objectives such as achieving a desired maximum operating temperature. With this method, 49% fewer thermal vias are needed to obtain a 47% reduction in the maximum temperatures, and 57% fewer thermal vias are needed to obtain a 68% reduction in the maximum thermal gradients than would be needed using a uniform distribution of thermal vias to obtain these same thermal improvements. Similar results were seen for other thermal objectives, and the method efficiently achieves its thermal objective while minimizing the thermal-via utilization.

155 citations


Cites methods from "Tracing the thermal behavior of ICs..."

  • ...A number of different numerical methods have been used to solve this differential equation for the thermal simulation of integrated circuits (ICs), such as finiteelement analysis (FEA) [34], finite-difference method (FDM) [35], finite-volume-based method [29], Fourier method [36], and alternating direction implicit (ADI) method [37]....

    [...]

Journal ArticleDOI
27 Feb 2009
TL;DR: 3-D NoC topologies incorporating dissimilar 3-D interconnect structures are reviewed as a promising solution for communication limited systems-on-chip (SoC).
Abstract: Design techniques for three-dimensional (3-D) ICs considerably lag the significant strides achieved in 3-D manufacturing technologies. Advanced design methodologies for two-dimensional circuits are not sufficient to manage the added complexity caused by the third dimension. Consequently, design methodologies that efficiently handle the added complexity and inherent heterogeneity of 3-D circuits are necessary. These 3-D design methodologies should support robust and reliable 3-D circuits while considering different forms of vertical integration, such as system-in-package and 3-D ICs with fine grain vertical interconnections. Global signaling issues, such as clock and power distribution networks, are further exacerbated in vertical integration due to the limited number of package pins, the distance of these pins from other planes within the 3-D system, and the impedance characteristics of the through silicon vias (TSVs). In addition to these dedicated networks, global signaling techniques that incorporate the diverse traits of complex 3-D systems are required. One possible approach, potentially significantly reducing the complexity of interconnect issues in 3-D circuits, is 3-D networks-on-chip (NoC). Design methodologies that exploit the diversity of 3-D structures to further enhance the performance of multiplane integrated systems are necessary. The longest interconnects within a 3-D circuit are those interconnects comprising several TSVs and traversing multiple physical planes. Consequently, minimizing the delay of the interplane nets is of great importance. By considering the nonuniform impedance characteristics of the interplane interconnects while placing the TSVs, the delay of these nets is decreased. In addition, the difference in electrical behavior between the horizontal and vertical interconnects suggests that asymmetric structures can be useful candidates for distributing the clock signal within a 3-D circuit. A 3-D test circuit fabricated with a 180 nm silicon-on-insulator (SOI) technology, manufactured by MIT Lincoln Laboratories, exploring several clock distribution topologies is described. Correct operation at 1 GHz has been demonstrated. Several 3-D NoC topologies incorporating dissimilar 3-D interconnect structures are reviewed as a promising solution for communication limited systems-on-chip (SoC). Appropriate performance models are described to evaluate these topologies. Several forms of vertical integration, such as system-in-package and different candidate technologies for 3-D circuits, such as SOI, are considered. The techniques described in this paper address fundamental interconnect structures in the 3-D design process. Several interesting research problems in the design of 3-D circuits are also discussed.

113 citations

01 Jan 2009
TL;DR: In this paper, the authors proposed 3-D networks-on-chip (NoC) topologies that exploit the diversity of 3D structures to further enhance the performance of multiplane integrated systems.
Abstract: Design techniques for three-dimensional (3-D) ICs considerably lag the significant strides achieved in 3-D manufacturing technologies. Advanced design methodologies for two-dimensional circuits are not sufficient to manage the added complexity caused by the third dimension. Consequently, design methodologies that efficiently handle the added complexity and inherent heterogeneity of 3-D circuits are necessary. These 3-D design methodologies should support robust and reliable 3-D circuits while considering different forms of vertical integration, such as system-in-package and 3-D ICs with fine grain vertical interconnections. Global signaling issues, such as clock and power distribution networks, are further exacerbated in vertical integration due to the limited number of package pins, the distance of these pins from other planes within the 3-D system, and the impedance characteristics of the through silicon vias (TSVs). In addition to these dedicated networks, global signaling techniques that incorporate the diverse traits of complex 3-D systems are required. One possible approach, potentially significantly reducing the complexity of interconnect issues in 3-D circuits, is 3-D networks-on-chip (NoC). Design methodologies that exploit the diversity of 3-D structures to further enhance the performance of multiplane integrated systems are necessary. The longest interconnects within a 3-D circuit are those interconnects comprising several TSVs and traversing multiple physical planes. Consequently, minimizing the delay of the interplane nets is of great importance. By considering the nonuniform impedance characteristics of the interplane interconnects while placing the TSVs, the delay of these nets is decreased. In addition, the difference in electrical behavior between the horizontal and vertical interconnects suggests that asymmetric structures can be useful candidates for distributing the clock signal within a 3-D circuit. A 3-D test circuit fabricated with a 180 nm silicon-on-insulator (SOI) technology, manufactured by MIT Lincoln Laboratories, exploring several clock distribution topologies is described. Correct operation at 1 GHz has been demonstrated. Several 3-D NoC topologies incorporating dissimilar 3-D interconnect structures are reviewed as a promising solution for communication limited systems-on-chip (SoC). Appropriate performance models are described to evaluate these topologies. Several forms of vertical integration, such as system-in-package and different candidate technologies for 3-D circuits, such as SOI, are considered. The techniques described in this paper address fundamental interconnect structures in the 3-D design process. Several interesting research problems in the design of 3-D circuits are also discussed.

106 citations

References
More filters
Book
31 Dec 1993

293 citations

Journal ArticleDOI
TL;DR: A new family of temperature sensors will be presented, developed by the authors especially for the purpose of thermal monitoring of VLSI chips, characterized by the very low silicon area and the low power consumption.
Abstract: The paper presents appropriate sensors for the realization of the design principle of design for thermal testability (DfTT). After a short overview of the available CMOS temperature sensors, a new family of temperature sensors will be presented, developed by the authors especially for the purpose of thermal monitoring of VLSI chips. These sensors are characterized by the very low silicon area of about 0.003-0.02 mm/sup 2/ and the low power consumption (200 /spl mu/W). The accuracy is in the order of 1/spl deg/C. Using the frequency-output versions an easy interfacing of digital test circuitry is assured. They can be very easily incorporated into the usual test circuitry, via the boundary-scan architecture. The paper presents measured results obtained by the experimental circuits. The facilities provided by the sensor connected to the boundary-scan test circuitry are also demonstrated experimentally.

122 citations

Journal ArticleDOI
01 Dec 1993
TL;DR: In this paper, the incomplete Choleski conjugate gradient (ICCG) method was used to simulate the thermal characteristics of integrated circuits and transient electrothermal performance using asymptotic waveform evaluation (AWE).
Abstract: This paper describes new techniques for simulating the DC and steady-state thermal characteristics of integrated circuits using the incomplete Choleski conjugate gradient (ICCG) method, and transient electrothermal performance using an efficient macromodeling method based on asymptotic waveform evaluation (AWE). Results on several benchmark circuits show orders of magnitude reductions in CPU time and memory with accuracy comparable to that of the traditional techniques. >

108 citations

01 Jan 1997
TL;DR: In this article, a new family of temperature sensors for the purpose of thermal monitoring of VLSI chips is presented, characterized by the very low silicon area of about 0.003-0.02 mm 2 and the low power consumption (200 μW).
Abstract: The paper presents appropriate sensors for the realization of the design principle of design for thermal testability (DfTT). After a short overview of the available CMOS temperature sensors, a new family of temperature sensors will be presented, developed by the authors especially for the purpose of thermal monitoring of VLSI chips. These sensors are characterized by the very low silicon area of about 0.003-0.02 mm 2 and the low power consumption (200 μW). The accuracy is in the order of 1 °C. Using the frequency-output versions an easy interfacing of digital test circuitry is assured. They can be very easily incorporated into the usual test circuitry, via the boundary-scan architecture. The paper presents measured results obtained by the experimental circuits. The facilities provided by the sensor connected to the boundary-scan test circuitry are also demonstrated experimentally.

107 citations

Proceedings ArticleDOI
07 Feb 1995
TL;DR: A novel approach is introduced, based on the derivation of a simple resistance network starting from a detailed model using optimization techniques, and it is demonstrated that it is possible to create a compact model comprising asimple resistance network, representing the detailed model to a high accuracy which is independent of the boundary conditions.
Abstract: The accurate prediction of operating temperatures of temperature sensitive electronic parts at the component, board and system level is seriously hampered by the lack of reliable, standardized input data. The situation which prevails today is that component manufacturers supply to end-users experimental data which characterizes the thermal behaviour of packages under a set of standardized and idealized conditions. Such characterizations normally involve the junction-to-case thermal resistance or the junction-to-ambient resistance according to MIL or SEMI standards. There are several practical difficulties associated with such an approach, which will be briefly commented upon. Today, the need for more accurate junction temperature prediction becomes increasingly urgent, and the call for a precise definition of the various thermal resistances is heard by a growing number of researchers. The paper continues with a survey of the open literature and discusses the pros and cons of several methods that describe the thermal behaviour of electronic parts. It is concluded that none of these methods is capable of meeting the objectives that are proposed. A novel approach is introduced, based on the derivation of a simple resistance network starting from a detailed model using optimization techniques. The proposed method is applied to two cases: a so-called 'validation' chip, functioning as a benchmark for the software that is used to generate the detailed model, and a 208-PQFP component. It is demonstrated that it is possible to create a compact model comprising a simple resistance network, representing the detailed model to a high accuracy which is independent of the boundary conditions.

103 citations