scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tractography-Based Score for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian Networks

TL;DR: A novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously is proposed that is employed in structure learning of DBN given the data.
Abstract: Objective: Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition [1] EC is “the causal influence exerted by one neuronal group on another” which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure–function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). Method: DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Results: Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. Conclusion: EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Significance: Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.
Citations
More filters
Journal ArticleDOI
Long Chen1, Linqing Wang1, Zhongyang Han1, Jun Zhao1, Wei Wang1 
TL;DR: The experimental results indicate that the proposed variational inference method for the KDBN can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.
Abstract: Prediction intervals ( PIs ) for industrial time series can provide useful guidance for workers. Given that the failure of industrial sensors may cause the missing point in inputs, the existing kernel dynamic Bayesian networks ( KDBN ) , serving as an effective method for PIs construction, suffer from high computational load using the stochastic algorithm for inference. This study proposes a variational inference method for the KDBN for the purpose of fast inference, which avoids the time-consuming stochastic sampling. The proposed algorithm contains two stages. The first stage involves the inference of the missing inputs by using a local linearization based variational inference, and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices. To verify the effectiveness of the proposed method, a synthetic dataset and a practical dataset of generation flow of blast furnace gas ( BFG ) are employed with different ratios of missing inputs. The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.

9 citations


Cites methods from "Tractography-Based Score for Learni..."

  • ...To verify the performance of the proposed method, this study compares the experimental results of several other methods of PIs construction, including the KDBN with weighted likelihood inference (KDBN-WL) [25], the Bayesian multiple layer perceptron (Bayesian MLP) [13], and the bootstrap-based echo state networks (Bootstrap ESN) [20]....

    [...]

  • ...Besides, in [20], an ensemble model containing a number of reservoir computing networks was employed by using the bootstrap techniques, which was applied to the prediction of practical industrial data....

    [...]

  • ...Similarly, to further verify the performance of the proposed method for the BFG data, this study compares the experimental results of several other methods of PIs construction, including the KDBN-WL [25], the Bayesian MLP [13], and the bootstrap ESN [20]....

    [...]

Journal ArticleDOI
TL;DR: A new method, called ACOEC-FD, to learn EC networks from fMRI and diffusion tensor imaging (DTI) using ant colony optimization (ACO), which achieves multi-modal imaging data integration by incorporating anatomical constraint information into the heuristic function of probabilistic transition rules.
Abstract: Identifying brain effective connectivity (EC) networks from neuroimaging data has become an effective tool that can evaluate normal brain functions and the injuries associated with neurodegenerative diseases. So far, there are many methods used to identify EC networks. However, most of the research currently focus on learning EC networks from single modal imaging data such as functional magnetic resonance imaging (fMRI) data. This paper proposes a new method, called ACOEC-FD, to learn EC networks from fMRI and diffusion tensor imaging (DTI) using ant colony optimization (ACO). First, ACOEC-FD uses DTI data to acquire some positively correlated relations among regions of interest (ROI), and takes them as anatomical constraint information to effectively restrict the search space of candidate arcs in an EC network. ACOEC-FD then achieves multi-modal imaging data integration by incorporating anatomical constraint information into the heuristic function of probabilistic transition rules to effectively encourage ants more likely to search for connections between structurally connected regions. Through simulation studies on generated datasets and real fMRI-DTI datasets, we demonstrate that the proposed approach results in improved inference results on EC compared to some methods that only used fMRI data.

7 citations

Journal ArticleDOI
TL;DR: The presented methodology appears to be well-suited for fMRI, particularly given its lack of explicit dependence on temporal lag structure, and is readily applicable to whole-brain effective connectivity estimation.
Abstract: In functional magnetic resonance imaging (fMRI), functional connectivity is conventionally characterized by correlations between fMRI time series, which are intrinsically undirected measures of connectivity. Yet, some information about the directionality of network connections can nevertheless be extracted from the matrix of pairwise temporal correlations between all considered time series, when expressed in the frequency-domain as a cross-spectral density matrix. Using a sparsity prior, it then becomes possible to determine a unique directed network topology that best explains the observed undirected correlations, without having to rely on temporal precedence relationships that may not be valid in fMRI. Applying this method on simulated data with 100 nodes yielded excellent retrieval of the underlying directed networks under a wide variety of conditions. Importantly, the method did not depend on temporal precedence to establish directionality, thus reducing susceptibility to hemodynamic variability. The computational efficiency of the algorithm was sufficient to enable whole-brain estimations, thus circumventing the problem of missing nodes that otherwise occurs in partial-brain analyses. Applying the method to real resting-state fMRI data acquired with a high temporal resolution, the inferred networks showed good consistency with structural connectivity obtained from diffusion tractography in the same subjects. Interestingly, this agreement could also be seen when considering high-frequency rather than low-frequency connectivity (average correlation: r = 0.26 for f < 0.3 Hz, r = 0.43 for 0.3 < f < 5 Hz). Moreover, this concordance was significantly better (p < 0.05) than for networks obtained with conventional functional connectivity based on correlations (average correlation r = 0.18). The presented methodology thus appears to be well-suited for fMRI, particularly given its lack of explicit dependence on temporal lag structure, and is readily applicable to whole-brain effective connectivity estimation.

7 citations


Cites methods from "Tractography-Based Score for Learni..."

  • ...SC is commonly used to constrain the estimation (Gilson et al., 2016; Crimi et al., 2017; Dang et al., 2018), or may be used independently to validate the estimated EC (Uddin et al., 2011; Bringmann et al., 2013)....

    [...]

  • ...SC is commonly used to constrain the estimation (Gilson et al., 2016; Crimi et al., 2017; Dang et al., 2018), or may be used independently to validate the estimated EC (Uddin et al....

    [...]

Journal ArticleDOI
TL;DR: Discrete Dynamic Bayesian Network (dDBN) is used in many challenging causal modelling applications, such as human brain connectivity, due to its multivariate, non-deterministic, and nonlinear capab...
Abstract: Discrete Dynamic Bayesian Network (dDBN) is used in many challenging causal modelling applications, such as human brain connectivity, due to its multivariate, non-deterministic, and nonlinear capab...

5 citations

Journal ArticleDOI
TL;DR: Four machine learning tools are applied to address the challenge in the IFDI of cutting arms and the experimental results show that the support vector machines based on dynamic cuckoo outperform the other methods.
Abstract: Incipient fault detection and identification (IFDI) of cutting arms is a crucial guarantee for the smooth operation of a roadheader. However, the shortage of fault samples restricts the application of the fault diagnosis technique, and the data analysis tools should be optimized efficiently. In this study, four machine learning tools (the back-propagation neural network based on genetic algorithm optimization, the naive Bayes based on genetic algorithm optimization, the support vector machines based on particle swarm optimization, and the support vector machines based on dynamic cuckoo) are applied to address the challenge in the IFDI of cutting arms. The commonly measured current and vibration data cutting arms are used in the IFDI. The experimental results show that the support vector machines based on dynamic cuckoo outperform the other methods. Besides, the performance of the four methods under different operating conditions is compared. The fault cause of cutting arms of the roadheader is analyzed and the design improvement scheme for cutting arms is provided. This study provides a reference for improving the fault diagnosis of the roadheader.

3 citations

References
More filters
01 Jan 2006
TL;DR: This paper shows that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al.
Abstract: Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of Weaver et al. [WWS99] — are all special cases of a general class of models called Dynamic Bayesian Networks (DBNs). The advantages of DBNs include the ability to model stochasticity, to incorporate prior knowledge, and to handle hidden variables and missing data in a principled way. This paper provides a review of techniques for learning DBNs.

435 citations


"Tractography-Based Score for Learni..." refers background in this paper

  • ...exponential time [34], because the total number of structures to be compared then are N2 N....

    [...]

Journal ArticleDOI
TL;DR: A state-of-the-art description of the usefulness and the interpretations of functional brain connectivity in the context of HA is provided and it is proposed that the use of complex modeling approaches studying effective connectivity may help to understand context-dependent functional reorganizations in the aging process.
Abstract: Healthy aging (HA) is associated with certain declines in cognitive functions, even in individuals that are free of any process of degenerative illness. Functional magnetic resonance imaging (fMRI) has been widely used in order to link this age-related cognitive decline with patterns of altered brain function. A consistent finding in the fMRI literature is that healthy old adults present higher activity levels in some brain regions during the performance of cognitive tasks. This finding is usually interpreted as a compensatory mechanism. More recent approaches have focused on the study of functional connectivity, mainly derived from resting state fMRI, and have concluded that the higher levels of activity coexist with disrupted connectivity. In this review, we aim to provide a state-of-the-art description of the usefulness and the interpretations of functional brain connectivity in the context of HA. We first give a background that includes some basic aspects and methodological issues regarding functional connectivity. We summarize the main findings and the cognitive models that have been derived from task-activity studies, and we then review the findings provided by resting-state functional connectivity in HA. Finally, we suggest some future directions in this field of research. A common finding of the studies included is that older subjects present reduced functional connectivity compared to young adults. This reduced connectivity affects the main brain networks and explains age-related cognitive alterations. Remarkably, the default mode network appears as a highly compromised system in HA. Overall, the scenario given by both activity and connectivity studies also suggests that the trajectory of changes during task may differ from those observed during resting-state. We propose that the use of complex modeling approaches studying effective connectivity may help to understand context-dependent functional reorganizations in the aging process.

396 citations


"Tractography-Based Score for Learni..." refers background in this paper

  • ...A common finding of fMRI studies is that old subjects exhibit reduced functional connectivity as compared to young population (review study [42])....

    [...]

  • ...Moreover, DMN has been shown to be highly compromised system in healthy aging [42]....

    [...]

Journal ArticleDOI
TL;DR: Combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects are described.

356 citations


"Tractography-Based Score for Learni..." refers background in this paper

  • ...In contrast, probabilistic graphical techniques such as Bayesian Networks (BNs) [17] are exploratory in nature....

    [...]

Journal ArticleDOI
TL;DR: A significant positive correlation was found between the average fractional anisotropy value of the cingulum tract and the level of functional connectivity between the precuneus/posterior cingulate cortex and medial frontal cortex, key regions of the default mode network.
Abstract: The default mode network is a functionally connected network of brain regions that show highly synchronized intrinsic neuronal activation during rest. However, less is known about the structural connections of this network, which could play an important role in the observed functional connectivity patterns. In this study, we examined the microstructural organization of the cingulum tract in relation to the level of resting-state default mode functional synchronization. Resting-state functional magnetic resonance imaging and diffusion tensor imaging data of 45 healthy subjects were acquired on a 3 tesla scanner. Both structural and functional connectivity of the default mode network were examined. In all subjects, the cingulum tract was identified from the total collection of reconstructed tracts to interconnect the precuneus/posterior cingulate cortex and medial frontal cortex, key regions of the default mode network. A significant positive correlation was found between the average fractional anisotropy value of the cingulum tract and the level of functional connectivity between the precuneus/posterior cingulate cortex and medial frontal cortex. Our results suggest a direct relationship between the structural and functional connectivity measures of the default mode network and contribute to the understanding of default mode network connectivity.

340 citations


"Tractography-Based Score for Learni..." refers background in this paper

  • ...mPFC-PCC/RSC [45]–[47], [58], and pHIP-RSC [59]....

    [...]

  • ...pCC/RSC, (2) left and right superior frontal cortex (SFC), (3) retrosplenial cortex (RSC) and parahippocampal (pHIP) gyrus (both left and right) [43]–[47]....

    [...]

Journal ArticleDOI
TL;DR: This work takes a broad look at the literature on learning Bayesian networks—in particular their structure—from data, and hopes that all the major fields in the area are covered.
Abstract: Bayesian networks have become a widely used method in the modelling of uncertain knowledge. Owing to the difficulty domain experts have in specifying them, techniques that learn Bayesian networks from data have become indispensable. Recently, however, there have been many important new developments in this field. This work takes a broad look at the literature on learning Bayesian networks-in particular their structure-from data. Specific topics are not focused on in detail, but it is hoped that all the major fields in the area are covered. This article is not intended to be a tutorial-for this, there are many books on the topic, which will be presented. However, an effort has been made to locate all the relevant publications, so that this paper can be used as a ready reference to find the works on particular sub-topics.

311 citations


"Tractography-Based Score for Learni..." refers background in this paper

  • ...Well known scores exist in literature [23], [24]....

    [...]