scispace - formally typeset
Open accessJournal ArticleDOI: 10.1038/S41591-021-01244-6

Transcriptional mediators of treatment resistance in lethal prostate cancer

04 Mar 2021-Nature Medicine (Nature Publishing Group)-Vol. 27, Iss: 3, pp 426-433
Abstract: Metastatic castration-resistant prostate cancer is typically lethal, exhibiting intrinsic or acquired resistance to second-generation androgen-targeting therapies and minimal response to immune checkpoint inhibitors1. Cellular programs driving resistance in both cancer and immune cells remain poorly understood. We present single-cell transcriptomes from 14 patients with advanced prostate cancer, spanning all common metastatic sites. Irrespective of treatment exposure, adenocarcinoma cells pervasively coexpressed multiple androgen receptor isoforms, including truncated isoforms hypothesized to mediate resistance to androgen-targeting therapies2,3. Resistance to enzalutamide was associated with cancer cell-intrinsic epithelial-mesenchymal transition and transforming growth factor-β signaling. Small cell carcinoma cells exhibited divergent expression programs driven by transcriptional regulators promoting lineage plasticity and HOXB5, HOXB6 and NR1D2 (refs. 4-6). Additionally, a subset of patients had high expression of dysfunction markers on cytotoxic CD8+ T cells undergoing clonal expansion following enzalutamide treatment. Collectively, the transcriptional characterization of cancer and immune cells from human metastatic castration-resistant prostate cancer provides a basis for the development of therapeutic approaches complementing androgen signaling inhibition.

... read more

Topics: Enzalutamide (61%), Prostate cancer (61%), Cancer (59%) ... show more
Citations
  More

17 results found


Open accessJournal ArticleDOI: 10.1016/J.CCELL.2021.02.015
Kevin Bi1, Kevin Bi2, Meng Xiao He1, Meng Xiao He2  +42 moreInstitutions (4)
10 May 2021-Cancer Cell
Abstract: Summary Immune checkpoint blockade (ICB) results in durable disease control in a subset of patients with advanced renal cell carcinoma (RCC), but mechanisms driving resistance are poorly understood. We characterize the single-cell transcriptomes of cancer and immune cells from metastatic RCC patients before or after ICB exposure. In responders, subsets of cytotoxic T cells express higher levels of co-inhibitory receptors and effector molecules. Macrophages from treated biopsies shift toward pro-inflammatory states in response to an interferon-rich microenvironment but also upregulate immunosuppressive markers. In cancer cells, we identify bifurcation into two subpopulations differing in angiogenic signaling and upregulation of immunosuppressive programs after ICB. Expression signatures for cancer cell subpopulations and immune evasion are associated with PBRM1 mutation and survival in primary and ICB-treated advanced RCC. Our findings demonstrate that ICB remodels the RCC microenvironment and modifies the interplay between cancer and immune cell populations critical for understanding response and resistance to ICB.

... read more

Topics: Immune checkpoint (58%), Immunotherapy (57%), Immune system (53%) ... show more

33 Citations


Open accessJournal ArticleDOI: 10.1530/ERC-21-0140
Abstract: Lineage plasticity and histologic transformation to small cell neuroendocrine prostate cancer (NEPC) is an increasingly recognized mechanism of treatment resistance in advanced prostate cancer. This is associated with aggressive clinical features and poor prognosis. Recent work has identified genomic, epigenomic, and transcriptome changes that distinguish NEPC from prostate adenocarcinoma, pointing to new mechanisms and therapeutic targets. Treatment-related NEPC arises clonally from prostate adenocarcinoma during the course of disease progression, retaining early genomic events and acquiring new molecular features that lead to tumor proliferation independent of androgen receptor activity, and ultimately demonstrating a lineage switch from a luminal prostate cancer phenotype to a small cell neuroendocrine carcinoma. Identifying the subset of prostate tumors most vulnerable to lineage plasticity and developing strategies for earlier detection and intervention for patients with NEPC may ultimately improve prognosis. Clinical trials focused on drug targeting of the lineage plasticity process and/or NEPC will require careful patient selection. Here, we review emerging targets and discuss biomarker considerations that may be informative for the design of future clinical studies.

... read more

Topics: Prostate cancer (57%)

3 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELREP.2021.109665
07 Sep 2021-Cell Reports
Abstract: Summary High-risk localized prostate cancer (HRLPC) is associated with a substantial risk of recurrence and disease mortality. Recent clinical trials have shown that intensifying anti-androgen therapies administered before prostatectomy can induce pathologic complete responses or minimal residual disease, called exceptional response, although the molecular determinants of these clinical outcomes are largely unknown. Here, we perform whole-exome and transcriptome sequencing on pre-treatment multi-regional tumor biopsies from exceptional responders (ERs) and non-responders (NRs, pathologic T3 or lymph node-positive disease) to intensive neoadjuvant anti-androgen therapies. Clonal SPOP mutation and SPOPL copy-number loss are exclusively observed in ERs, while clonal TP53 mutation and PTEN copy-number loss are exclusively observed in NRs. Transcriptional programs involving androgen signaling and TGF-β signaling are enriched in ERs and NRs, respectively. These findings may guide prospective validation studies of these molecular features in large HRLPC clinical cohorts treated with neoadjuvant anti-androgens to improve patient stratification.

... read more

2 Citations


Open accessJournal ArticleDOI: 10.1016/J.CCELL.2021.09.005
Youmna Kfoury1, Ninib Baryawno, Nicolas Severe1, Shenglin Mei1  +14 moreInstitutions (1)
08 Nov 2021-Cancer Cell
Abstract: Summary Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.

... read more

Topics: Bone metastasis (67%), Bone marrow (55%), Prostate cancer (54%) ... show more

2 Citations


Open accessJournal ArticleDOI: 10.3390/BIOMEDICINES9080967
06 Aug 2021-Biomedicines
Abstract: Colorectal cancer (CRC) is one of the most common tumours in developed countries. Although its incidence and mortality rates have decreased, its prognosis has not changed, and a high percentage of patients with CRC develop relapse (metachronous metastasis, MM, or local recurrence, LR) during their disease. The identification of these patients is very important for their correct management, but the lack of prognostic markers makes it difficult. Given the connection between circadian disruption and cancer development and progression, we aimed to analyse the prognostic significance of core circadian proteins in CRC. We measured the expression of PER1-3, CRY1-2, BMAL1 and NR1D2 in a cohort of CRC patients by immunohistochemistry (IHC) and analysed their prognostic potential in this disease. A low expression of PER2 and BMAL1 was significantly associated with metastasis at the moment of disease diagnosis, whereas a high expression of CRY1 appeared as an independent prognostic factor of MM development. A high expression of NR1D2 appeared as an independent prognostic factor of LR development after disease diagnosis. Moreover, patients with a low expression of BMAL1 and a high expression of CRY1 showed lower OS and DFS at five years. Although these markers need to be validated in larger and different ethnic cohorts, the simplicity of IHC makes these proteins candidates for personalizing CRC treatment.

... read more

Topics: Metastasis (52%), Colorectal cancer (51%)

References
  More

61 results found


Journal ArticleDOI: 10.1111/J.2517-6161.1995.TB02031.X
Abstract: SUMMARY The common approach to the multiplicity problem calls for controlling the familywise error rate (FWER). This approach, though, has faults, and we point out a few. A different approach to problems of multiple significance testing is presented. It calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate. This error rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. Therefore, in problems where the control of the false discovery rate rather than that of the FWER is desired, there is potential for a gain in power. A simple sequential Bonferronitype procedure is proved to control the false discovery rate for independent test statistics, and a simulation study shows that the gain in power is substantial. The use of the new procedure and the appropriateness of the criterion are illustrated with examples.

... read more

Topics: False discovery rate (72%), Per-comparison error rate (66%), False coverage rate (63%) ... show more

71,936 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTP324
Heng Li1, Richard Durbin1Institutions (1)
01 Jul 2009-Bioinformatics
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

... read more

Topics: Hybrid genome assembly (54%), Sequence assembly (53%), 2 base encoding (52%) ... show more

35,234 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTS635
01 Jan 2013-Bioinformatics
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

... read more

Topics: MRNA Sequencing (57%)

20,172 Citations


Open accessJournal ArticleDOI: 10.1038/NBT.4096
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

... read more

4,666 Citations


Open accessJournal ArticleDOI: 10.1038/NMETH.4197
Rob Patro1, Geet Duggal, Michael I. Love2, Rafael A. Irizarry2  +1 moreInstitutions (3)
01 Apr 2017-Nature Methods
Abstract: We introduce Salmon, a lightweight method for quantifying transcript abundance from RNA-seq reads. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. It is the first transcriptome-wide quantifier to correct for fragment GC-content bias, which, as we demonstrate here, substantially improves the accuracy of abundance estimates and the sensitivity of subsequent differential expression analysis.

... read more

3,535 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202117