scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA

TL;DR: In this paper, the authors develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine and identify hundreds of unique sites in human and yeast mRNAs and snoRNAs.
About: This article is published in Cell.The article was published on 2014-09-25 and is currently open access. It has received 697 citations till now. The article focuses on the topics: Pseudouridine & MRNA modification.
Citations
More filters
Journal ArticleDOI
TL;DR: A detailed overview of mRNA vaccines is provided and future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use are considered.
Abstract: mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.

2,274 citations

Journal ArticleDOI
04 Jun 2015-Cell
TL;DR: In a unified mechanism of m(6)A-based regulation in the cytoplasm, YTHDF2-mediated degradation controls the lifetime of target transcripts, whereasYTHDF1-mediated translation promotion increases translation efficiency, ensuring effective protein production from dynamic transcripts that are marked by m( 6)A.

2,179 citations

Journal ArticleDOI
15 Jun 2017-Cell
TL;DR: Roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes are revealed.

1,855 citations

Journal ArticleDOI
TL;DR: N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses.
Abstract: The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis.

1,369 citations

Journal ArticleDOI
TL;DR: m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) is developed and used to demonstrate that antibodies to m6A can induce specific mutational signatures at m 6A residues after ultraviolet light–induced antibody-RNA cross- linking and reverse transcription.
Abstract: N(6)-methyladenosine (m6A) is the most abundant modified base in eukaryotic mRNA and has been linked to diverse effects on mRNA fate. Current mapping approaches localize m6A residues to transcript regions 100-200 nt long but cannot identify precise m6A positions on a transcriptome-wide level. Here we developed m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) and used it to demonstrate that antibodies to m6A can induce specific mutational signatures at m6A residues after ultraviolet light-induced antibody-RNA cross-linking and reverse transcription. We found that these antibodies similarly induced mutational signatures at N(6),2'-O-dimethyladenosine (m6Am), a modification found at the first nucleotide of certain mRNAs. Using these signatures, we mapped m6A and m6Am at single-nucleotide resolution in human and mouse mRNA and identified small nucleolar RNAs (snoRNAs) as a new class of m6A-containing non-coding RNAs (ncRNAs).

1,036 citations

References
More filters
Journal ArticleDOI
TL;DR: The European Molecular Biology Open Software Suite is a mature package of software tools developed for the molecular biology community that includes a comprehensive set of applications for molecular sequence analysis and other tasks and integrates popular third-party software packages under a consistent interface.

9,493 citations

Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: It is shown that m6A is selectively recognized by the human YTH domain family 2 (YTHDF2) ‘reader’ protein to regulate mRNA degradation and established the role of YTH DF2 in RNA metabolism, showing that binding of Y THDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies.
Abstract: N(6)-methyladenosine (m(6)A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m(6)A modification remains to be determined. The recent discovery of two m(6)A demethylases in mammalian cells highlighted the importance of m(6)A in basic biological functions and disease. Here we show that m(6)A is selectively recognized by the human YTH domain family 2 (YTHDF2) 'reader' protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m(6)A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m(6)A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m(6)A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.

2,699 citations

Journal ArticleDOI
TL;DR: The Vienna RNA Websuite provides a web interface to the most commonly used programs of the Vienna RNA package and provides analysis of folding landscapes using the barriers program and structural RNA alignments using LocARNA.
Abstract: The Vienna RNA Websuite is a comprehensive collection of tools for folding, design and analysis of RNA sequences. It provides a web interface to the most commonly used programs of the Vienna RNA package. Among them, we find folding of single and aligned sequences, prediction of RNA–RNA interactions, and design of sequences with a given structure. Additionally, we provide analysis of folding landscapes using the barriers program and structural RNA alignments using LocARNA. The web server together with software packages for download is freely accessible at http://rna.tbi.univie.ac.at/.

1,947 citations

Journal ArticleDOI
TL;DR: An overview of new developments in the InterPro database and its associated software since 2009 is given, including updates to database content, curation processes and Web and programmatic interfaces.
Abstract: InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and metagenomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to

1,094 citations

Journal ArticleDOI
TL;DR: New features are included: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides.
Abstract: MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A number of newly identified modified ribonucleosides and more than one hundred functionally and structurally characterized proteins from various organisms have been added. In the RNA sequences section, snRNAs and snoRNAs with experimentally mapped modified nucleosides have been added and the current collection of rRNA and tRNA sequences has been substantially enlarged. To facilitate literature searches, each record in MODOMICS has been cross-referenced to other databases and to selected key publications. New options for database searching and querying have been implemented, including a BLAST search of protein sequences and a PARALIGN search of the collected nucleic acid sequences.

911 citations

Related Papers (5)