scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells.

01 Mar 2013-Stem Cells and Development (Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA)-Vol. 22, Iss: 5, pp 772-780
TL;DR: It is suggested that horizontal transfer of the mRNA for IGF-1R to tubular cells through Exo potentiates tubular cell sensitivity to locally produced IGF- 1 providing a new mechanism underlying the powerful renoprotection of few BM-MSC observed in vivo.
Abstract: Bone marrow–mesenchymal stem cells (BM-MSC) ameliorate renal dysfunction and repair tubular damage of acute kidney injury by locally releasing growth factors, including the insulin-like growth factor-1 (IGF-1). The restricted homing of BM-MSC at the site of injury led us to investigate a possible gene-based communication mechanism between BM-MSC and tubular cells. Human BM-MSC (hBM-MSC) released microparticles and exosomes (Exo) enriched in mRNAs. A selected pattern of transcripts was detected in Exo versus parental cells. Exo expressed the IGF-1 receptor (IGF-1R), but not IGF-1 mRNA, while hBM-MSC contained both mRNAs. R- cells lacking IGF-1R exposed to hBM-MSC-derived Exo acquired the human IGF-1R transcript that was translated in the corresponding protein. Transfer of IGF-1R mRNA from Exo to cisplatin-damaged proximal tubular cells (proximal tubular epithelial cell [PTEC]) increased PTEC proliferation. Coincubation of damaged PTEC with Exo and soluble IGF-1 further enhanced cell proliferation. These fi...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: T careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell‐free MSC‐based therapies with decreased risk.
Abstract: Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell communication, cell signaling, and altering cell or tissue metabolism at short or long distances in the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease. MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regenerative medicine, much will depend on the quality, reproducibility, and potency of their production, in the same manner that these parameters dictate the development of cell-based MSC therapies. However, the MSC exosome's contents are not static, but rather a product of the MSC tissue origin, its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. Stem Cells 2017;35:851-858.

1,067 citations

Journal ArticleDOI
TL;DR: Current knowledge related to the potential use of MSC-derived EVs in various diseases is reviewed and the promising future for EVs as an alternative, cell-free therapy is discussed.

783 citations

Journal ArticleDOI
TL;DR: MSC-mediated effects on immune cell responses, cell survival, and fibrosis are discussed, and the development of powerful cell-derived therapeutics for regenerative medicine is reviewed.
Abstract: The past decade has seen an explosion of research directed toward better understanding of the mechanisms of mesenchymal stem/stromal cell (MSC) function during rescue and repair of injured organs and tissues. In addition to delineating cell–cell signaling and molecular controls for MSC differentiation, the field has made particular progress in defining several other mechanisms through which administered MSCs can promote tissue rescue/repair. These include: 1) paracrine activity that involves secretion of proteins/peptides and hormones; 2) transfer of mitochondria by way of tunneling nanotubes or microvesicles; and 3) transfer of exosomes or microvesicles containing RNA and other molecules. Improved understanding of MSC function holds great promise for the application of cell therapy and also for the development of powerful cell-derived therapeutics for regenerative medicine. Focusing on these three mechanisms, we discuss MSC-mediated effects on immune cell responses, cell survival, and fibrosis and review recent progress with MSC-based or MSC-derived therapeutics.

572 citations


Cites background from "Transfer of growth factor receptor ..."

  • ...[167] showed that MSCs transferred exosomes with mRNA for IGF1R and IGF1 to cisplatin-damaged proximal tubular cells; this resulted in their expression of IGF1R, thereby increasing sensitization to IGF-1....

    [...]

Journal ArticleDOI
TL;DR: It is found that MSC exosomes ranged from 30 to 100-nm in diameter and internalization of MSCExosomes resulted in a dose-dependent enhancement of proliferation and migration of fibroblasts derived from normal donors and chronic wound patients.
Abstract: Although chronic wounds are common and continue to be a major cause of morbidity and mortality, treatments for these conditions are lacking and often ineffective. A large body of evidence exists demonstrating the therapeutic potential of mesenchymal stem cells (MSCs) for repair and regeneration of damaged tissue, including acceleration of cutaneous wound healing. However, the exact mechanisms of wound healing mediated by MSCs are unclear. In this study, we examined the role of MSC exosomes in wound healing. We found that MSC exosomes ranged from 30 to 100-nm in diameter and internalization of MSC exosomes resulted in a dose-dependent enhancement of proliferation and migration of fibroblasts derived from normal donors and chronic wound patients. Uptake of MSC exosomes by human umbilical vein endothelial cells also resulted in dose-dependent increases of tube formation by endothelial cells. MSC exosomes were found to activate several signaling pathways important in wound healing (Akt, ERK, and STAT3) and induce the expression of a number of growth factors [hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF1), nerve growth factor (NGF), and stromal-derived growth factor-1 (SDF1)]. These findings represent a promising opportunity to gain insight into how MSCs may mediate wound healing.

474 citations


Cites background from "Transfer of growth factor receptor ..."

  • ...MSC exosomes have been found to transfer growth factor receptor mRNA, which was translated to the corresponding protein in renal tubular cells [75]....

    [...]

Journal ArticleDOI
TL;DR: There is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.
Abstract: The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.

469 citations


Cites result from "Transfer of growth factor receptor ..."

  • ...Some studies suggest miRNA transfer by MSC-derived exosomes mediates various therapeutic effects [184], in a manner similar to microvesicles....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: It is shown that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location, and it is proposed that this RNA is called “exosomal shuttle RNA” (esRNA).
Abstract: Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).

10,484 citations


"Transfer of growth factor receptor ..." refers background or methods or result in this paper

  • ...The presence of miRNAs into Exo from mast cells [8], ES cells [32], and BM-MSC [28,29] has been taken to suggest that they act as regulators of cell–cell communication by modulating the fate and behavior of target cells via epigenetic changes of their transcriptome....

    [...]

  • ...Selective mRNA transfer into Exo supported the notion that the mRNA contained in the Exo is not an exact copy of the mRNAs of the donor cells as previously observed in mast cells [8]....

    [...]

  • ...The molecular cargo content of Exo derives from active packaging of certain nucleic acid species leading to the presence of mRNAs in Exo that are not found in donor cells [8]....

    [...]

  • ...Besides protein, Exo contain nucleic acids [8,9]....

    [...]

  • ...Enriched preparations of Exo were purified as previously described [8,9,11]....

    [...]

Journal ArticleDOI
TL;DR: This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of micro RNA function.
Abstract: MicroRNAs constitute a large family of small, approximately 21-nucleotide-long, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in metazoans and plants. In mammals, microRNAs are predicted to control the activity of approximately 30% of all protein-coding genes, and have been shown to participate in the regulation of almost every cellular process investigated so far. By base pairing to mRNAs, microRNAs mediate translational repression or mRNA degradation. This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of microRNA function.

4,973 citations


"Transfer of growth factor receptor ..." refers background in this paper

  • ...Besides functional mRNA, Exo contain microRNAs (miRNAs) [28,29], small noncoding RNAs that regulate gene expression at the post-transcriptional level [30]....

    [...]

Journal ArticleDOI
TL;DR: The small vesicles shed from the surface of many cells upon stimulation, considered for a long time to be artefacts, are now recognized as specific structures that are distinct from the exosomes released upon exocytosis of multivesicular bodies.

1,673 citations

Journal ArticleDOI
13 Feb 2004-Science
TL;DR: Highly sensitive nanotubular structures formed de novo between cells that create complex networks facilitate the selective transfer of membrane vesicles and organelles but seem to impede the flow of small molecules are described.
Abstract: Cell-to-cell communication is a crucial prerequisite for the development and maintenance of multicellular organisms. To date, diverse mechanisms of intercellular exchange of information have been documented, including chemical synapses, gap junctions, and plasmodesmata. Here, we describe highly sensitive nanotubular structures formed de novo between cells that create complex networks. These structures facilitate the selective transfer of membrane vesicles and organelles but seem to impede the flow of small molecules. Accordingly, we propose a novel biological principle of cell-to-cell interaction based on membrane continuity and intercellular transfer of organelles.

1,471 citations


"Transfer of growth factor receptor ..." refers background in this paper

  • ...Cells communicate and exchange information by different ways, including the secretion of soluble factors, the cell-to-cell adhesion contact, and the intercellular exchange of organelles through nanotubular structures [1]....

    [...]

Journal ArticleDOI
01 May 2006-Leukemia
TL;DR: ES-MV isolated from murine ES cells in serum-free cultures significantly enhanced survival and improved expansion of murine HPC, and upregulated the expression of early pluripotent and early hematopoietic stem cells in these cells.
Abstract: Membrane-derived vesicles (MV) are released from the surface of activated eucaryotic cells and exert pleiotropic effects on surrounding cells. Since the maintenance of pluripotency and undifferentiated propagation of embryonic stem (ES) cells in vitro requires tight cell to cell contacts and effective intercellular signaling, we hypothesize that MV derived from ES cells (ES-MV) express stem cell-specific molecules that may also support self-renewal and expansion of adult stem cells. To address this hypothesis, we employed expansion of hematopoietic progenitor cells (HPC) as a model. We found that ES-MV (10 microg/ml) isolated from murine ES cells (ES-D3) in serum-free cultures significantly (i) enhanced survival and improved expansion of murine HPC, (ii) upregulated the expression of early pluripotent (Oct-4, Nanog and Rex-1) and early hematopoietic stem cells (Scl, HoxB4 and GATA 2) markers in these cells, and (iii) induced phosphorylation of MAPK p42/44 and serine-threonine kinase AKT. Furthermore, molecular analysis revealed that ES-MV express Wnt-3 protein and are selectively highly enriched in mRNA for several pluripotent transcription factors as compared to parental ES cells. More important, this mRNA could be delivered by ES-MV to target cells and translated into the corresponding proteins. The biological effects of ES-MV were inhibited after heat inactivation or pretreatment with RNAse, indicating a major involvement of protein and mRNA components of ES-MV in the observed phenomena. We postulate that ES-MV may efficiently expand HPC by stimulating them with ES-MV expressed ligands (e.g., Wnt-3) as well as increase their pluripotency after horizontal transfer of ES-derived mRNA.

1,464 citations

Related Papers (5)