scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Transgenerational epigenetic inheritance: how important is it?

TL;DR: Five leading researchers working on a range of model organisms and in human disease are asked for their views on transgenerational epigenetic inheritance and the wide gulf between species in terms of the authors' knowledge of the mechanisms that may be involved.
Abstract: Much attention has been given to the idea of transgenerational epigenetic inheritance, but fundamental questions remain regarding how much takes place and the impact that this might have on organisms. We asked five leading researchers in this area--working on a range of model organisms and in human disease--for their views on these topics. Their responses highlight the mixture of excitement and caution that surrounds transgenerational epigenetic inheritance and the wide gulf between species in terms of our knowledge of the mechanisms that may be involved.

Content maybe subject to copyright    Report

Citations
More filters
Book
09 Oct 1998
TL;DR: This poster presents a probabilistic procedure for estimating the mechanical properties of bone based on known mechanisms, including compressive forces, compressive strength, and the compressive properties of Bone.
Abstract: Forces in Joints, Skeletal Biology, Analysis of Bone Remodeling, Mechanical Properties of Bone, Fatigue and Fracture Resistance of Bone, Mechanical Adaptation of the Skeleton, Synovial Joint Mechanics, Mechanical Properties of Ligament and Tendon

1,246 citations

Journal ArticleDOI
TL;DR: The extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later?
Abstract: Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention.

891 citations

Journal ArticleDOI
01 Apr 2015-Genetics
TL;DR: The history behind the multitude of definitions that have been employed since the conception of epigenetics are discussed, the components of these definitions are analyzed, and solutions for clarifying the field and mitigating the problems that have arisen due to these definitional ambiguities are offered.
Abstract: Interest in the field of epigenetics has increased rapidly over the last decade, with the term becoming more identifiable in biomedical research, scientific fields outside of the molecular sciences, such as ecology and physiology, and even mainstream culture. It has become increasingly clear, however, that different investigators ascribe different definitions to the term. Some employ epigenetics to explain changes in gene expression, others use it to refer to transgenerational effects and/or inherited expression states. This disagreement on a clear definition has made communication difficult, synthesis of epigenetic research across fields nearly impossible, and has in many ways biased methodologies and interpretations. This article discusses the history behind the multitude of definitions that have been employed since the conception of epigenetics, analyzes the components of these definitions, and offers solutions for clarifying the field and mitigating the problems that have arisen due to these definitional ambiguities.

370 citations

Journal ArticleDOI
TL;DR: It is proposed that improved understanding of the molecular mechanisms underlying human health and disease are best achieved through carrying out studies of epigenetics in populations as a part of an integrated functional genomics strategy.
Abstract: The epigenome has been heralded as a key 'missing piece' of the aetiological puzzle for complex phenotypes across the biomedical sciences. The standard research approaches developed for genetic epidemiology, however, are not necessarily appropriate for epigenetic studies of common disease. Here, we discuss the optimal execution of population-based studies of epigenetic variation, which will contribute to the emerging field of 'epigenetic epidemiology' and emphasize the importance of establishing a causal role in pathology for disease-associated epigenetic changes. We propose that improved understanding of the molecular mechanisms underlying human health and disease are best achieved through carrying out studies of epigenetics in populations as a part of an integrated functional genomics strategy.

322 citations

Journal ArticleDOI
TL;DR: The underlying mechanisms of BPA-induced multi-organ toxicity were well summarized, involving the receptor pathways, disruption of neuroendocrine system, inhibition of enzymes, modulation of immune and inflammatory responses, as well as genotoxic and epigenetic mechanisms.

321 citations

References
More filters
Journal ArticleDOI
TL;DR: Drawing on insights from both plants and animals should deepen the understanding of the regulation and biological significance of DNA methylation.
Abstract: Cytosine DNA methylation is a stable epigenetic mark that is crucial for diverse biological processes, including gene and transposon silencing, imprinting and X chromosome inactivation. Recent findings in plants and animals have greatly increased our understanding of the pathways used to accurately target, maintain and modify patterns of DNA methylation and have revealed unanticipated mechanistic similarities between these organisms. Key roles have emerged for small RNAs, proteins with domains that bind methylated DNA and DNA glycosylases in these processes. Drawing on insights from both plants and animals should deepen our understanding of the regulation and biological significance of DNA methylation.

3,180 citations

Journal ArticleDOI
TL;DR: The study of imprinting provides new insights into epigenetic gene modification during development, and is thought to influence the transfer of nutrients to the fetus and the newborn from the mother.
Abstract: Genomic imprinting affects several dozen mammalian genes and results in the expression of those genes from only one of the two parental chromosomes. This is brought about by epigenetic instructions--imprints--that are laid down in the parental germ cells. Imprinting is a particularly important genetic mechanism in mammals, and is thought to influence the transfer of nutrients to the fetus and the newborn from the mother. Consistent with this view is the fact that imprinted genes tend to affect growth in the womb and behaviour after birth. Aberrant imprinting disturbs development and is the cause of various disease syndromes. The study of imprinting also provides new insights into epigenetic gene modification during development.

2,212 citations

Journal ArticleDOI
26 Jun 2009-Science
TL;DR: It is shown that P granules exhibit liquid-like behaviors, including fusion, dripping, and wetting, which is used to estimate their viscosity and surface tension, and reflects a classic phase transition, in which polarity proteins vary the condensation point across the cell.
Abstract: In sexually reproducing organisms, embryos specify germ cells, which ultimately generate sperm and eggs In Caenorhabditis elegans, the first germ cell is established when RNA and protein-rich P granules localize to the posterior of the one-cell embryo Localization of P granules and their physical nature remain poorly understood Here we show that P granules exhibit liquid-like behaviors, including fusion, dripping, and wetting, which we used to estimate their viscosity and surface tension As with other liquids, P granules rapidly dissolved and condensed Localization occurred by a biased increase in P granule condensation at the posterior This process reflects a classic phase transition, in which polarity proteins vary the condensation point across the cell Such phase transitions may represent a fundamental physicochemical mechanism for structuring the cytoplasm

2,134 citations

Journal ArticleDOI
11 May 2012-Cell
TL;DR: It is discovered that exposure of cell or tissue lysates to a biotinylated isoxazole (b-isox) chemical precipitated hundreds of RNA-binding proteins with significant overlap to the constituents of RNA granules, offering a framework for understanding the function of LC sequences as well as an organizing principle for cellular structures that are not membrane bound.

1,703 citations

Journal ArticleDOI
TL;DR: The comprehensiveness of the ALSPAC approach with a total population sample unselected by disease status, and the availability of parental genotypes, provides an adequate sample for statistical analysis and for avoiding spurious results.
Abstract: ALSPAC (The Avon Longitudinal Study of Parents and Children, formerly the Avon Longitudinal Study of Pregnancy and Childhood) was specifically designed to determine ways in which the individual's genotype combines with environmental pressures to influence health and development. To date, there are comprehensive data on approximately 10,000 children and their parents, from early pregnancy until the children are aged between 8 and 9. The study aims to continue to collect detailed data on the children as they go through puberty noting, in particular, changes in anthropometry, attitudes and behaviour, fitness and other cardiovascular risk factors, bone mineralisation, allergic symptoms and mental health. The study started early during pregnancy and collected very detailed data from the mother and her partner before the child was born. This not only provided accurate data on concurrent features, especially medication, symptoms, diet and lifestyle, attitudes and behaviour, social and environmental features, but was unbiased by parental knowledge of any problems that the child might develop. From the time of the child's birth many different aspects of the child's environment have been monitored and a wide range of phenotypic data collected. By virtue of being based in one geographic area, linkage to medical and educational records is relatively simple, and hands-on assessments of children and parents using local facilities has the advantage of high quality control. The comprehensiveness of the ALSPAC approach with a total population sample unselected by disease status, and the availability of parental genotypes, provides an adequate sample for statistical analysis and for avoiding spurious results. The study has an open policy in regard to collaboration within strict confidentiality rules.

1,494 citations