scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Transition in boundary layers subject to free-stream turbulence

25 Sep 2004-Journal of Fluid Mechanics (Cambridge University Press)-Vol. 517, pp 167-198
TL;DR: In this article, the effect of high levels of free-stream turbulence on the transition in a Blasius boundary layer is studied by means of direct numerical simulations, where a synthetic turbulent inflow is obtained as superposition of modes of the continuous spectrum of the Orr-Sommerfeld and Squire operators.
Abstract: The effect of high levels of free-stream turbulence on the transition in a Blasius boundary layer is studied by means of direct numerical simulations, where a synthetic turbulent inflow is obtained as superposition of modes of the continuous spectrum of the Orr–Sommerfeld and Squire operators. In the present bypass scenario the flow in the boundary layer develops streamwise elongated regions of high and low streamwise velocity and it is suggested that the breakdown into turbulent spots is related to local instabilities of the strong shear layers associated with these streaks. Flow structures typical of the spot precursors are presented and these show important similarities with the flow structures observed in previous studies on the secondary instability and breakdown of steady symmetric streaks.Numerical experiments are performed by varying the energy spectrum of the incoming perturbation. It is shown that the transition location moves to lower Reynolds numbers by increasing the integral length scale of the free-stream turbulence. The receptivity to free-stream turbulence is also analysed and it is found that two distinct physical mechanisms are active depending on the energy content of the external disturbance. If low-frequency modes diffuse into the boundary layer, presumably at the leading edge, the streaks are induced by streamwise vorticity through the linear lift-up effect. If, conversely, the free-stream perturbations are mainly located above the boundary layer a nonlinear process is needed to create streamwise vortices inside the shear layer. The relevance of the two mechanisms is discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a nominally zero-pressure-gradient incompressible boundary layer over a smooth flat plate was simulated for a continuous momentum thickness Reynolds number range of 80 ≤ Reθ ≤ 940.
Abstract: A nominally-zero-pressure-gradient incompressible boundary layer over a smooth flat plate was simulated for a continuous momentum thickness Reynolds number range of 80 ≤ Reθ ≤ 940. Transition which is completed at approximately Reθ = 750 was triggered by intermittent localized disturbances arising from patches of isotropic turbulence introduced periodically from the free stream at Reθ = 80. Streamwise pressure gradient is quantified with several measures and is demonstrated to be weak. Blasius boundary layer is maintained in the early transitional region of 80 < Reθ < 180 within which the maximum deviation of skin friction from the theoretical solution is less than 1%. Mean and second-order turbulence statistics are compared with classic experimental data, and they constitute a rare DNS dataset for the spatially developing zero-pressure-gradient turbulent flat-plate boundary layer. Our calculations indicate that in the present spatially developing low-Reynolds-number turbulent flat-plate boundary layer, total shear stress mildly overshoots the wall shear stress in the near-wall region of 2–20 wall units with vanishing normal gradient at the wall. Overshoots as high as 10% across a wider percentage of the boundary layer thickness exist in the late transitional region. The former is a residual effect of the latter. The instantaneous flow fields are vividly populated by hairpin vortices. This is the first time that direct evidence (in the form of a solution of the Navier–Stokes equations, obeying the statistical measurements, as opposed to synthetic superposition of the structures) shows such dominance of these structures. Hairpin packets arising from upstream fragmented Λ structures are found to be instrumental in the breakdown of the present boundary layer bypass transition.

521 citations


Cites background from "Transition in boundary layers subje..."

  • ...Jacobs & Durbin (2001), Brandt et al. (2004) and Zaki & Durbin (2005). Streaks are abundant in the present ZPGFPBL prior to breakdown (see figures 32 and 33)....

    [...]

  • ...Jacobs & Durbin (2001), Brandt et al. (2004) and Zaki & Durbin (2005)....

    [...]

  • ...Several previous studies on laminar boundary layer under the perturbation of continuous free stream turbulence emphasized on the role of elongated negative u ′ structures (streaks), e.g. Jacobs & Durbin (2001), Brandt et al. (2004) and Zaki & Durbin (2005)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the spectral content of the inflow velocity is found to be important for large-eddy simulations of turbulent, wall-bounded flows and three methods are tested in a simulation of spatially developing turbulent channel flow.
Abstract: Comparisons of inflow conditions for large-eddy simulations of turbulent, wall-bounded flows are carried out. Consistent with previous investigations, it is found that the spectral content of the inflow velocity is important. Inflow conditions based on random-noise, or small-scale eddies only, dissipate quickly. Temporal and spatial filtering of a time series obtained from a separate calculation indicates that it is important to capture eddies of dimensions equal to or larger than the integral length scale of the flow. Three methods for generating inflow velocity fields are tested in a simulation of spatially developing turbulent channel flow. Synthetic turbulence generation methods that introduce realistic length scales are more suitable than uncorrelated random noise, but still require fairly long development lengths before realistic turbulence is established. A recycling method based on the use of turbulent data obtained from a separate calculation, in different flow conditions, was found to result in more rapid transition. A forcing method that includes a control loop also appears to be effective by generating turbulence with the correct Reynolds stresses and correlations within less than ten channel half heights.

298 citations

01 Jan 2007

253 citations


Cites background from "Transition in boundary layers subje..."

  • ...Transition in boundary layers subject to free-stream turbulence (Brandt et al., 2004) 9....

    [...]

  • ...Transition in boundary layers subject to free-stream turbulence (Brandt et al., 2004) 9....

    [...]

  • ...The front page image is a visualization of laminar-turbulent transition induced by ambient free-stream turbulence convected above a flat plate, i.e. so-called bypass transition (Brandt et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: Schlatter et al. as mentioned in this paper assessed available direct numerical simulation (DNS) data from turbulent boundary layer flows and found that the simulation results showed surprisingly l l l o r...
Abstract: A recent assessment of available direct numerical simulation (DNS) data from turbulent boundary layer flows (Schlatter & Orlu, J. Fluid Mech., vol. 659, 2010, pp. 116-126) showed surprisingly l ...

238 citations


Cites background or result from "Transition in boundary layers subje..."

  • ...On the other hand, cases LF and LA (figure 4b,c), tend to form incipient turbulent spots (similar to bypass transition caused by free-stream disturbances as e.g. described in Brandt et al. 2004), which then grow while travelling downstream and eventually merge to produce a fully turbulent flow....

    [...]

  • ...The overshoot is thus clearly associated with laminar–turbulent transition in accordance with previous transition studies (for instance in the data by Brandt et al. 2004)....

    [...]

  • ...…mechanism; cases LA and LF are going through a region with the intermittent appearance of turbulent spots embedded in laminar flow which lead to the characteristic cf curves with a comparatively slow increase towards the turbulent value, as known from bypass transition (Brandt et al. 2004)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors describe the initial energy growth of streamwise-oriented d-stream flows and show that free-stream turbulence (FST) is perhaps the most important source inducing bypass transition in boundary layer flows.
Abstract: Free-stream turbulence (FST) is perhaps the most important source inducing by-pass transition in boundary layer flows. The present study describes the initial energy growth of streamwise-oriented d ...

195 citations


Cites background from "Transition in boundary layers subje..."

  • ...…the same time have the same turbulence scales (both regarding the turbulence decay and the energy-containing scales) is a demanding task, and such studies may therefore be more suitable for direct numerical simulations where such requirements may be controlled easily (see e.g. Brandt et al. 2004)....

    [...]

References
More filters
Book
01 Jan 1972
TL;DR: In this paper, the authors present a reference record created on 2005-11-18, modified on 2016-08-08 and used for the analysis of turbulence and transport in the context of energie.
Abstract: Keywords: turbulence ; transport ; contraintes ; transport ; couche : limite ; ecoulement ; tourbillon ; energie Reference Record created on 2005-11-18, modified on 2016-08-08

8,276 citations


"Transition in boundary layers subje..." refers methods in this paper

  • ...Following the construction of a three-dimensional spectrum in Tennekes & Lumley (1972), an integral length scale L of the turbulence is introduced according to L = 1.8 κmax , where κmax is the wavenumber of maximum energy....

    [...]

Book
28 Dec 2000
TL;DR: In this article, the authors present an approach to the Viscous Initial Value Problem with the objective of finding the optimal growth rate and the optimal response to the initial value problem.
Abstract: 1 Introduction and General Results.- 1.1 Introduction.- 1.2 Nonlinear Disturbance Equations.- 1.3 Definition of Stability and Critical Reynolds Numbers.- 1.3.1 Definition of Stability.- 1.3.2 Critical Reynolds Numbers.- 1.3.3 Spatial Evolution of Disturbances.- 1.4 The Reynolds-Orr Equation.- 1.4.1 Derivation of the Reynolds-Orr Equation.- 1.4.2 The Need for Linear Growth Mechanisms.- I Temporal Stability of Parallel Shear Flows.- 2 Linear Inviscid Analysis.- 2.1 Inviscid Linear Stability Equations.- 2.2 Modal Solutions.- 2.2.1 General Results.- 2.2.2 Dispersive Effects and Wave Packets.- 2.3 Initial Value Problem.- 2.3.1 The Inviscid Initial Value Problem.- 2.3.2 Laplace Transform Solution.- 2.3.3 Solutions to the Normal Vorticity Equation.- 2.3.4 Example: Couette Flow.- 2.3.5 Localized Disturbances.- 3 Eigensolutions to the Viscous Problem.- 3.1 Viscous Linear Stability Equations.- 3.1.1 The Velocity-Vorticity Formulation.- 3.1.2 The Orr-Sommerfeld and Squire Equations.- 3.1.3 Squire's Transformation and Squire's Theorem.- 3.1.4 Vector Modes.- 3.1.5 Pipe Flow.- 3.2 Spectra and Eigenfunctions.- 3.2.1 Discrete Spectrum.- 3.2.2 Neutral Curves.- 3.2.3 Continuous Spectrum.- 3.2.4 Asymptotic Results.- 3.3 Further Results on Spectra and Eigenfunctions.- 3.3.1 Adjoint Problem and Bi-Orthogonality Condition.- 3.3.2 Sensitivity of Eigenvalues.- 3.3.3 Pseudo-Eigenvalues.- 3.3.4 Bounds on Eigenvalues.- 3.3.5 Dispersive Effects and Wave Packets.- 4 The Viscous Initial Value Problem.- 4.1 The Viscous Initial Value Problem.- 4.1.1 Motivation.- 4.1.2 Derivation of the Disturbance Equations.- 4.1.3 Disturbance Measure.- 4.2 The Forced Squire Equation and Transient Growth.- 4.2.1 Eigenfunction Expansion.- 4.2.2 Blasius Boundary Layer Flow.- 4.3 The Complete Solution to the Initial Value Problem.- 4.3.1 Continuous Formulation.- 4.3.2 Discrete Formulation.- 4.4 Optimal Growth.- 4.4.1 The Matrix Exponential.- 4.4.2 Maximum Amplification.- 4.4.3 Optimal Disturbances.- 4.4.4 Reynolds Number Dependence of Optimal Growth.- 4.5 Optimal Response and Optimal Growth Rate.- 4.5.1 The Forced Problem and the Resolvent.- 4.5.2 Maximum Growth Rate.- 4.5.3 Response to Stochastic Excitation.- 4.6 Estimates of Growth.- 4.6.1 Bounds on Matrix Exponential.- 4.6.2 Conditions for No Growth.- 4.7 Localized Disturbances.- 4.7.1 Choice of Initial Disturbances.- 4.7.2 Examples.- 4.7.3 Asymptotic Behavior.- 5 Nonlinear Stability.- 5.1 Motivation.- 5.1.1 Introduction.- 5.1.2 A Model Problem.- 5.2 Nonlinear Initial Value Problem.- 5.2.1 The Velocity-Vorticity Equations.- 5.3 Weakly Nonlinear Expansion.- 5.3.1 Multiple-Scale Analysis.- 5.3.2 The Landau Equation.- 5.4 Three-Wave Interactions.- 5.4.1 Resonance Conditions.- 5.4.2 Derivation of a Dynamical System.- 5.4.3 Triad Interactions.- 5.5 Solutions to the Nonlinear Initial Value Problem.- 5.5.1 Formal Solutions to the Nonlinear Initial Value Problem.- 5.5.2 Weakly Nonlinear Solutions and the Center Manifold.- 5.5.3 Nonlinear Equilibrium States.- 5.5.4 Numerical Solutions for Localized Disturbances.- 5.6 Energy Theory.- 5.6.1 The Energy Stability Problem.- 5.6.2 Additional Constraints.- II Stability of Complex Flows and Transition.- 6 Temporal Stability of Complex Flows.- 6.1 Effect of Pressure Gradient and Crossflow.- 6.1.1 Falkner-Skan (FS) Boundary Layers.- 6.1.2 Falkner-Skan-Cooke (FSC) Boundary layers.- 6.2 Effect of Rotation and Curvature.- 6.2.1 Curved Channel Flow.- 6.2.2 Rotating Channel Flow.- 6.2.3 Combined Effect of Curvature and Rotation.- 6.3 Effect of Surface Tension.- 6.3.1 Water Table Flow.- 6.3.2 Energy and the Choice of Norm.- 6.3.3 Results.- 6.4 Stability of Unsteady Flow.- 6.4.1 Oscillatory Flow.- 6.4.2 Arbitrary Time Dependence.- 6.5 Effect of Compressibility.- 6.5.1 The Compressible Initial Value Problem.- 6.5.2 Inviscid Instabilities and Rayleigh's Criterion.- 6.5.3 Viscous Instability.- 6.5.4 Nonmodal Growth.- 7 Growth of Disturbances in Space.- 7.1 Spatial Eigenvalue Analysis.- 7.1.1 Introduction.- 7.1.2 Spatial Spectra.- 7.1.3 Gaster's Transformation.- 7.1.4 Harmonic Point Source.- 7.2 Absolute Instability.- 7.2.1 The Concept of Absolute Instability.- 7.2.2 Briggs' Method.- 7.2.3 The Cusp Map.- 7.2.4 Stability of a Two-Dimensional Wake.- 7.2.5 Stability of Rotating Disk Flow.- 7.3 Spatial Initial Value Problem.- 7.3.1 Primitive Variable Formulation.- 7.3.2 Solution of the Spatial Initial Value Problem.- 7.3.3 The Vibrating Ribbon Problem.- 7.4 Nonparallel Effects.- 7.4.1 Asymptotic Methods.- 7.4.2 Parabolic Equations for Steady Disturbances.- 7.4.3 Parabolized Stability Equations (PSE).- 7.4.4 Spatial Optimal Disturbances.- 7.4.5 Global Instability.- 7.5 Nonlinear Effects.- 7.5.1 Nonlinear Wave Interactions.- 7.5.2 Nonlinear Parabolized Stability Equations.- 7.5.3 Examples.- 7.6 Disturbance Environment and Receptivity.- 7.6.1 Introduction.- 7.6.2 Nonlocalized and Localized Receptivity.- 7.6.3 An Adjoint Approach to Receptivity.- 7.6.4 Receptivity Using Parabolic Evolution Equations.- 8 Secondary Instability.- 8.1 Introduction.- 8.2 Secondary Instability of Two-Dimensional Waves.- 8.2.1 Derivation of the Equations.- 8.2.2 Numerical Results.- 8.2.3 Elliptical Instability.- 8.3 Secondary Instability of Vortices and Streaks.- 8.3.1 Governing Equations.- 8.3.2 Examples of Secondary Instability of Streaks and Vortices.- 8.4 Eckhaus Instability.- 8.4.1 Secondary Instability of Parallel Flows.- 8.4.2 Parabolic Equations for Spatial Eckhaus Instability.- 9 Transition to Turbulence.- 9.1 Transition Scenarios and Thresholds.- 9.1.1 Introduction.- 9.1.2 Three Transition Scenarios.- 9.1.3 The Most Likely Transition Scenario.- 9.1.4 Conclusions.- 9.2 Breakdown of Two-Dimensional Waves.- 9.2.1 The Zero Pressure Gradient Boundary Layer.- 9.2.2 Breakdown of Mixing Layers.- 9.3 Streak Breakdown.- 9.3.1 Streaks Forced by Blowing or Suction.- 9.3.2 Freestream Turbulence.- 9.4 Oblique Transition.- 9.4.1 Experiments and Simulations in Blasius Flow.- 9.4.2 Transition in a Separation Bubble.- 9.4.3 Compressible Oblique Transition.- 9.5 Transition of Vortex-Dominated Flows.- 9.5.1 Transition in Flows with Curvature.- 9.5.2 Direct Numerical Simulations of Secondary Instability of Crossflow Vortices.- 9.5.3 Experimental Investigations of Breakdown of Cross-flow Vortices.- 9.6 Breakdown of Localized Disturbances.- 9.6.1 Experimental Results for Boundary Layers.- 9.6.2 Direct Numerical Simulations in Boundary Layers.- 9.7 Transition Modeling.- 9.7.1 Low-Dimensional Models of Subcritical Transition.- 9.7.2 Traditional Transition Prediction Models.- 9.7.3 Transition Prediction Models Based on Nonmodal Growth.- 9.7.4 Nonlinear Transition Modeling.- III Appendix.- A Numerical Issues and Computer Programs.- A.1 Global versus Local Methods.- A.2 Runge-Kutta Methods.- A.3 Chebyshev Expansions.- A.4 Infinite Domain and Continuous Spectrum.- A.5 Chebyshev Discretization of the Orr-Sommerfeld Equation.- A.6 MATLAB Codes for Hydrodynamic Stability Calculations.- A.7 Eigenvalues of Parallel Shear Flows.- B Resonances and Degeneracies.- B.1 Resonances and Degeneracies.- B.2 Orr-Sommerfeld-Squire Resonance.- C Adjoint of the Linearized Boundary Layer Equation.- C.1 Adjoint of the Linearized Boundary Layer Equation.- D Selected Problems on Part I.

2,215 citations


"Transition in boundary layers subje..." refers background in this paper

  • ...It is now understood that since the linearized Navier–Stokes operator is non-normal for many flow cases, a significant transient growth may occur before the subsequent exponential behaviour (Butler & Farrell 1992; Reddy & Henningson 1993; Schmid & Henningson 2001)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a complete set of perturbations, ordered by energy growth, is found using variational methods. But the optimal perturbation is not of modal form, and those which grow the most resemble streamwise vortices, which divert the mean flow energy into streaks of streamwise velocity and enable the energy of the perturbance to grow by as much as three orders of magnitude.
Abstract: Transition to turbulence in plane channel flow occurs even for conditions under which modes of the linearized dynamical system associated with the flow are stable. In this paper an attempt is made to understand this phenomena by finding the linear three‐dimensional perturbations that gain the most energy in a given time period. A complete set of perturbations, ordered by energy growth, is found using variational methods. The optimal perturbations are not of modal form, and those which grow the most resemble streamwise vortices, which divert the mean flow energy into streaks of streamwise velocity and enable the energy of the perturbation to grow by as much as three orders of magnitude. It is suggested that excitation of these perturbations facilitates transition from laminar to turbulent flow. The variational method used to find the optimal perturbations in a shear flow also allows construction of tight bounds on growth rate and determination of regions of absolute stability in which no perturbation growth is possible.

1,083 citations


"Transition in boundary layers subje..." refers background in this paper

  • ...It is now understood that since the linearized Navier–Stokes operator is non-normal for many flow cases, a significant transient growth may occur before the subsequent exponential behaviour (Butler & Farrell 1992; Reddy & Henningson 1993; Schmid & Henningson 2001)....

    [...]

01 Sep 1981
TL;DR: In this article, the results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy in an incompressible fluid subjected to uniform deformation or rotation are compared with linear theory and experimental data.
Abstract: The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.

993 citations


"Transition in boundary layers subje..." refers background in this paper

  • ...Isotropic grid turbulence can be reproduced by a sum of Fourier modes with random amplitudes (see Rogallo 1981); however, in the presence of an inhomogeneous direction, an alternative complete basis is required; in particular, in the present case, the new basis functions need to accommodate the wall. As pointed out in Grosch & Salwen (1978), a natural choice for the new basis is the use of the modes of the continuous spectrum....

    [...]

  • ...Isotropic grid turbulence can be reproduced by a sum of Fourier modes with random amplitudes (see Rogallo 1981); however, in the presence of an inhomogeneous direction, an alternative complete basis is required; in particular, in the present case, the new basis functions need to accommodate the…...

    [...]

Journal ArticleDOI
TL;DR: In this article, a self-sustaining process for wall-bounded shear flows is investigated, which consists of streamwise rolls that redistribute the mean shear to create streaks that wiggle to maintain the rolls.
Abstract: A self-sustaining process conjectured to be generic for wall-bounded shear flows is investigated. The self-sustaining process consists of streamwise rolls that redistribute the mean shear to create streaks that wiggle to maintain the rolls. The process is analyzed and shown to be remarkably insensitive to whether there is no-slip or free-slip at the walls. A low-order model of the process is derived from the Navier–Stokes equations for a sinusoidal shear flow. The model has two unstable steady solutions above a critical Reynolds number, in addition to the stable laminar flow. For some parameter values, there is a second critical Reynolds number at which a homoclinic bifurcation gives rise to a stable periodic solution. This suggests a direct link between unstable steady solutions and almost periodic solutions that have been computed in plane Couette flow. It is argued that this self-sustaining process is responsible for the bifurcation of shear flows at low Reynolds numbers and perhaps also for controlling the near-wall region of turbulent shear flows at higher Reynolds numbers.

914 citations


"Transition in boundary layers subje..." refers background in this paper

  • ...…& Huerre (1995) and Bottaro & Klingmann (1996), whereas the instability of streaks arising from the transient growth of streamwise vortices in channel flows has been studied theoretically by Waleffe (1995, 1997) and Reddy et al. (1998) and experimentally by Elofsson, Kawakami & Alfredsson (1999)....

    [...]