scispace - formally typeset
Open AccessJournal ArticleDOI

Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance.

Reads0
Chats0
TLDR
Collectively, the Ti3 C2 Tx films are among the state-of-the-art for future transparent, conductive, capacitive electrodes, and translate into technologically viable devices for next-generation wearable, portable electronics.
Abstract
2D transition-metal carbides and nitrides, known as MXenes, have displayed promising properties in numerous applications, such as energy storage, electromagnetic interference shielding, and catalysis. Titanium carbide MXene (Ti3 C2 Tx ), in particular, has shown significant energy-storage capability. However, previously, only micrometer-thick, nontransparent films were studied. Here, highly transparent and conductive Ti3 C2 Tx films and their application as transparent, solid-state supercapacitors are reported. Transparent films are fabricated via spin-casting of Ti3 C2 Tx nanosheet colloidal solutions, followed by vacuum annealing at 200 °C. Films with transmittance of 93% (≈4 nm) and 29% (≈88 nm) demonstrate DC conductivity of ≈5736 and ≈9880 S cm-1 , respectively. Such highly transparent, conductive Ti3 C2 Tx films display impressive volumetric capacitance (676 F cm-3 ) combined with fast response. Transparent solid-state, asymmetric supercapacitors (72% transmittance) based on Ti3 C2 Tx and single-walled carbon nanotube (SWCNT) films are also fabricated. These electrodes exhibit high capacitance (1.6 mF cm-2 ) and energy density (0.05 µW h cm-2 ), and long lifetime (no capacitance decay over 20 000 cycles), exceeding that of graphene or SWCNT-based transparent supercapacitor devices. Collectively, the Ti3 C2 Tx films are among the state-of-the-art for future transparent, conductive, capacitive electrodes, and translate into technologically viable devices for next-generation wearable, portable electronics.

read more

Citations
More filters
Journal ArticleDOI

Towards flexible solid-state supercapacitors for smart and wearable electronics

TL;DR: The state-of-the-art advancements in FSSCs are reviewed to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs.
Journal ArticleDOI

Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties

TL;DR: The nacre-inspired strategy in this study offers a promising approach for the design and preparation of the strong integrated and flexible MXene/CNF composite paper, which may be applied in various fields such as flexible wearable devices, weapon equipment, and robot joints.
Journal ArticleDOI

The world of two-dimensional carbides and nitrides (MXenes)

TL;DR: A forward-looking review of the field of 2D carbides and nitrides can be found in this article, where the challenges to be addressed and research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies are discussed.
Journal ArticleDOI

Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes).

TL;DR: In this paper, the electronic and optical properties of 2D transition metal carbides, carbonitrides, and nitrides are discussed from both theoretical and experimental perspectives, as well as applications related to those properties.
References
More filters
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti 3 AlC 2

TL;DR: 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid are reported, which opens a door to the synthesis of a large number of other 2D crystals.
Journal ArticleDOI

2D metal carbides and nitrides (MXenes) for energy storage

TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Journal ArticleDOI

Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance

TL;DR: This capacitance report reports a method of producing two-dimensional titanium carbide ‘clay’ using a solution of lithium fluoride and hydrochloric acid that offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
Journal ArticleDOI

Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Related Papers (5)