scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Transparent, Mechanically Strong, Amphiphilic Antibiofouling Coatings Integrating Antismudge and Intrinsic Self-Healing Capabilities

09 Jul 2021-Vol. 3, Iss: 7, pp 3416-3427
About: The article was published on 2021-07-09. It has received 2 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures.
Abstract: Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.

4 citations

Journal ArticleDOI
TL;DR: In this paper , chitosan nanoparticles (NPs) loaded with gallic acid (GA) were self-assembled with gelatin (GE) to prepare high-performance, degradable, self-healing bio-based nanocomposite coatings with antibacterial and antioxidant properties.
Abstract: The purpose of this study is to obtain a bio-based coating with good functional activity and self-healing ability, demonstrating its potential in food, materials, and other application fields. Plastic coatings can cause serious environmental pollution. It was a good solution to replace plastic coatings with degradable coatings. However, the development of degradable coatings in the fields of food and materials was limited due to their insufficient antibacterial ability and weak comprehensive properties. Therefore, chitosan nanoparticles (NPs) loaded with gallic acid (GA) were self-assembled with gelatin (GE) to prepare high-performance, degradable, self-healing bio-based nanocomposite coatings with antibacterial and antioxidant properties. The oxygen permeability of GE nanocomposite coatings decreased gradually with the addition of NPs, and the barrier properties increased significantly. At the same time, due to the excellent antioxidant and antibacterial ability of GA, the antioxidant effect of the nanocomposite coatings increased by 119%, and the antibacterial rate against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) increased by 32% and 58%, respectively, compared with the pure GE coatings. In addition, the nanocomposite coatings can be repaired within 24 h after being scratched at room temperature. Finally, GA coated with chitosan nanoparticles can significantly delay the escape of GA, and the retardation of gallic acid release exceeded 89% in simulated solutions after 24 h immersion, extending the service life of the nanocomposite coatings.
References
More filters
Journal ArticleDOI
TL;DR: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed and ongoing research in this area should result in the development of even better antifouling materials in the future.
Abstract: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future.

2,278 citations

Journal ArticleDOI
TL;DR: Advances in nanotechnology and polymer science, and the development of novel surface designs 'bioinspired' by nature, are expected to have a significant impact on theDevelopment of a new generation of environmentally friendly marine coatings.
Abstract: 'Marine biofouling', the undesired growth of marine organisms such as microorganisms, barnacles and seaweeds on submerged surfaces, is a global problem for maritime industries, with both economic and environmental penalties. The primary strategy for combating marine fouling is to use biocide-containing paints, but environmental concerns and legislation are driving science and technology towards non-biocidal solutions based solely on physico-chemical and materials properties of coatings. Advances in nanotechnology and polymer science, and the development of novel surface designs 'bioinspired' by nature, are expected to have a significant impact on the development of a new generation of environmentally friendly marine coatings.

994 citations

Journal ArticleDOI
TL;DR: These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8(TM), and silicon as biocompatible, with gold and silicon showing reduced biofouling.

596 citations