scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering

10 Feb 2003-Applied Physics Letters (American Institute of Physics)-Vol. 82, Iss: 7, pp 1117-1119
TL;DR: In this paper, the authors fabricated ZnO thin-film transistors by rf magnetron sputtering on Si substrates held near room temperature, and the best devices had field effect mobility of more than 2 cm2/V and an on/off ratio>106.
Abstract: We fabricated ZnO thin-film transistors by rf magnetron sputtering on Si substrates held near room temperature. The best devices had field-effect mobility of more than 2 cm2/V s and an on/off ratio>106. These ZnO films had resistivity ∼105 ohm cm, with high optical transparency (>80% for wavelength >400 nm), and compressive stress <0.5 GPa. The combination of transparency in the visible, excellent transistor characteristics, and low-temperature processing makes ZnO thin-film transistors attractive for flexible electronics on temperature sensitive substrates.
Citations
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

2,440 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported high performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration.
Abstract: We report high-performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19V, a saturation mobility of 27cm2∕Vs, a gate voltage swing of 1.39V∕decade and an on/off ratio of 3×105. The ZnO-TFT presents an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high mobility, and room-temperature processing makes the ZnO-TFT a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics.

1,499 citations

Journal ArticleDOI
TL;DR: The effect of Ar plasma treatment on amorphous indium gallium zinc oxide (a-IGZO) thin films was investigated in this paper, where the authors attempted to reduce the contact resistance between the Pt∕Ti (source/drain electrode) and a-IZO (channel).
Abstract: The effect of Ar plasma treatment on amorphous indium gallium zinc oxide (a-IGZO) thin films was investigated The net electron carrier concentration (1020–1021cm−3) of the a-IGZO thin films dramatically increased upon their exposure to the Ar plasma compared to that (1014cm−3) of the as-deposited thin film The authors attempted to reduce the contact resistance between the Pt∕Ti (source/drain electrode) and a-IGZO (channel) by using the Ar plasma treatment Without the treatment, the a-IGZO thin film transistors (TFTs) with W∕L=50∕4μm exhibited a moderate field-effect mobility (μFE) of 33cm2∕Vs, subthreshold gate swing (S) of 025V∕decade, and Ion∕off ratio of 4×107 The device performance of the a-IGZO TFTs was significantly improved by the Ar plasma treatment As a result, an excellent S value of 019V∕decade and high Ion∕off ratio of 1×108, as well as a high μFE of 91cm2∕Vs, were achieved for the treated a-IGZO TFTs

1,295 citations

References
More filters
Book
01 Jan 2001

19,319 citations

Book
01 Jan 1956
TL;DR: In this article, the authors present a chemical analysis of X-ray diffraction by Xray Spectrometry and phase-diagram Determination of single crystal structures and phase diagrams.
Abstract: 1. Properties of X-rays. 2. Geometry of Crystals. 3. Diffraction I: Directions of Diffracted Beams. 4. Diffraction II: Intensities of Diffracted Beams. 5. Diffraction III: Non-Ideal Samples. 6. Laure Photographs. 7. Powder Photographs. 8. Diffractometer and Spectrometer. 9. Orientation and Quality of Single Crystals. 10. Structure of Polycrystalline Aggregates. 11. Determination of Crystal Structure. 12. Precise Parameter Measurements. 13. Phase-Diagram Determination. 14. Order-Disorder Transformation. 15. Chemical Analysis of X-ray Diffraction. 16. Chemical Analysis by X-ray Spectrometry. 17. Measurements of Residual Stress. 18. Polymers. 19. Small Angle Scatters. 20. Transmission Electron Microscope.

17,428 citations

Journal ArticleDOI
29 Oct 1999-Science
TL;DR: A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated and molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin- film transistors.
Abstract: Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 06 square centimeters per volt-second and current modulation greater than 10(4) Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors

1,887 citations

Book
01 Jan 1962

1,129 citations