scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Trellis Coded Spatial Modulation

TL;DR: TCSM exhibits significant performance enhancements in the presence of realistic channel conditions such as Rician fading and spatial correlation (SC) and the complexity of the proposed scheme is shown to be 80% less than the V-BLAST complexity.
Abstract: Trellis coded modulation (TCM) is a well known scheme that reduces power requirements without any bandwidth expansion. In TCM, only certain sequences of successive constellation points are allowed (mapping by set partitioning). The novel idea in this paper is to apply the TCM concept to the antenna constellation points of spatial modulation (SM). The aim is to enhance SM performance in correlated channel conditions. SM considers the multiple transmit antennas as additional constellation points and maps a first part of a block of information bits to the transmit antenna indices. Therefore, spatial multiplexing gains are retained and spectral efficiency is boosted. The second part of the block of information bits is mapped to a complex symbol using conventional digital modulation schemes. At any particular time instant, only one antenna is active. The receiver estimates the transmitted symbol and the active antenna index and uses the two estimates to retrieve the original block of data bits. In this paper, TCM partitions the entire set of transmit antennas into sub-sets such that the spacing between antennas within a particular sub-set is maximized. The scheme is called trellis coded spatial modulation (TCSM). Tight analytical performance bounds over correlated fading channels are proposed in this paper. In addition, the performance and complexity of TCSM is compared to the performance of SM, coded V-BLAST (vertical Bell Labs layered space-time) applying near optimum sphere decoder algorithm, and Alamouti scheme combined with TCM. Also, the performance of all schemes with turbo coded modulation is presented. It is shown that under the same spectral efficiency, TCSM exhibits significant performance enhancements in the presence of realistic channel conditions such as Rician fading and spatial correlation (SC). In addition, the complexity of the proposed scheme is shown to be 80% less than the V-BLAST complexity.
Citations
More filters
Journal Article
TL;DR: An analytical approach for symbol error ratio (SER) analysis of the SM algorithm in independent identically distributed Rayleigh channels results closely match and it is shown that SM achieves better performance in all studied channel conditions, as compared with other techniques.
Abstract: Spatial modulation (SM) is a recently developed transmission technique that uses multiple antennas. The basic idea is to map a block of information bits to two information carrying units: 1) a symbol that was chosen from a constellation diagram and 2) a unique transmit antenna number that was chosen from a set of transmit antennas. The use of the transmit antenna number as an information-bearing unit increases the overall spectral efficiency by the base-two logarithm of the number of transmit antennas. At the receiver, a maximum receive ratio combining algorithm is used to retrieve the transmitted block of information bits. Here, we apply SM to orthogonal frequency division multiplexing (OFDM) transmission. We develop an analytical approach for symbol error ratio (SER) analysis of the SM algorithm in independent identically distributed (i.i.d.) Rayleigh channels. The analytical and simulation results closely match. The performance and the receiver complexity of the SM-OFDM technique are compared to those of the vertical Bell Labs layered space-time (V-BLAST-OFDM) and Alamouti-OFDM algorithms. V-BLAST uses minimum mean square error (MMSE) detection with ordered successive interference cancellation. The combined effect of spatial correlation, mutual antenna coupling, and Rician fading on both coded and uncoded systems are presented. It is shown that, for the same spectral efficiency, SM results in a reduction of around 90% in receiver complexity as compared to V-BLAST and nearly the same receiver complexity as Alamouti. In addition, we show that SM achieves better performance in all studied channel conditions, as compared with other techniques. It is also shown to efficiently work for any configuration of transmit and receive antennas, even for the case of fewer receive antennas than transmit antennas.

1,996 citations

Journal ArticleDOI
01 Jan 2014
TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

1,171 citations

Journal ArticleDOI
TL;DR: Spatial Modulation is a novel and recently proposed multiple-antenna transmission technique that can offer, with a very low system complexity, improved data rates compared to Single-Input- Single-Output (SISO) systems, and robust error performance even in correlated channel environments.
Abstract: Multiple-antenna techniques constitute a key technology for modern wireless communications, which trade-off superior error performance and higher data rates for increased system complexity and cost. Among the many transmission principles that exploit multiple-antenna at either the transmitter, the receiver, or both, Spatial Modulation (SM) is a novel and recently proposed multiple-antenna transmission technique that can offer, with a very low system complexity, improved data rates compared to Single-Input- Single-Output (SISO) systems, and robust error performance even in correlated channel environments. SM is an entirely new modulation concept that exploits the uniqueness and randomness properties of the wireless channel for communication. This is achieved by adopting a simple but effective coding mechanism that establishes a one-to-one mapping between blocks of information bits to be transmitted and the spatial positions of the transmit-antenna in the antenna-array. In this article, we summarize the latest research achievements and outline some relevant open research issues of this recently proposed transmission technique.

720 citations


Cites background or methods from "Trellis Coded Spatial Modulation"

  • ...Finally, in [14] the authors have proposed a new modulation concept that aims at reducing the effect of channel correlation on the performance of SM....

    [...]

  • ...Simulation results in [14] have indicated that TCSM can provide better performance than SM and V–BLAST schemes over correlated Rician fading channels, while still guaranteeing the same spectral efficiency....

    [...]

01 Jan 2014
TL;DR: This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM- MIMO.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wire- less network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, espe- cially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless commu- nications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communica- tions, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Further- more, it has received sufficient research attention to be im- plemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

583 citations


Cites background or methods from "Trellis Coded Spatial Modulation"

  • ...In [100] and [177], the authors study the performance of TCSM using hard-decision Viterbi decoding....

    [...]

  • ...In [55], [100], and [177], the authors study the per-...

    [...]

  • ...In [100] and [111], an encoding mechanism based on TCM is proposed for reducing the impact of channel correlation on the system’s performance....

    [...]

Journal ArticleDOI
TL;DR: A general survey of the SM design framework as well as of its intrinsic limits is provided, focusing on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/cooperative protocol design issues, and on their meritorious variants.
Abstract: A new class of low-complexity, yet energy-efficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely, the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO), has emerged. These systems are capable of exploiting the spatial dimensions (i.e., the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication while relying on a single-Radio Frequency (RF) chain. Moreover, SM may be also viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/cooperative protocol design issues, and on their meritorious variants.

558 citations


Cites methods from "Trellis Coded Spatial Modulation"

  • ...in [50] and with Trellis Coding (TC) in [51]–[53] in order to take advantage of the benefits of both....

    [...]

References
More filters
Journal ArticleDOI
Siavash Alamouti1
TL;DR: This paper presents a simple two-branch transmit diversity scheme that provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas.
Abstract: This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may easily be generalized to two transmit antennas and M receive antennas to provide a diversity order of 2M. The new scheme does not require any bandwidth expansion or any feedback from the receiver to the transmitter and its computation complexity is similar to MRRC.

13,706 citations


"Trellis Coded Spatial Modulation" refers background in this paper

  • ...At the receiver, the transmitted symbols are estimated as follows [3], [40],...

    [...]

  • ...The aim is to improve power efficiency by maximizing spatial diversity (as in space-time coding (STC)) [3], [4], or to boost the data rate by transmitting independent streams from each transmit antenna (as in V-BLAST (vertical Bell Labs layered space-time)) [5], [6], or to achieve both of them at the same time at the expense of increasing complexity [7]....

    [...]

Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

Journal ArticleDOI
TL;DR: A generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas and it is shown that many of the codes presented here are optimal in this sense.
Abstract: We introduce space-time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space-time block code and the encoded data is split into n streams which are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. Maximum-likelihood decoding is achieved in a simple way through decoupling of the signals transmitted from different antennas rather than joint detection. This uses the orthogonal structure of the space-time block code and gives a maximum-likelihood decoding algorithm which is based only on linear processing at the receiver. Space-time block codes are designed to achieve the maximum diversity order for a given number of transmit and receive antennas subject to the constraint of having a simple decoding algorithm. The classical mathematical framework of orthogonal designs is applied to construct space-time block codes. It is shown that space-time block codes constructed in this way only exist for few sporadic values of n. Subsequently, a generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas. These codes achieve the maximum possible transmission rate for any number of transmit antennas using any arbitrary real constellation such as PAM. For an arbitrary complex constellation such as PSK and QAM, space-time block codes are designed that achieve 1/2 of the maximum possible transmission rate for any number of transmit antennas. For the specific cases of two, three, and four transmit antennas, space-time block codes are designed that achieve, respectively, all, 3/4, and 3/4 of maximum possible transmission rate using arbitrary complex constellations. The best tradeoff between the decoding delay and the number of transmit antennas is also computed and it is shown that many of the codes presented here are optimal in this sense as well.

7,348 citations


"Trellis Coded Spatial Modulation" refers background in this paper

  • ...The aim is to improve power efficiency by maximizing spatial diversity (as in space-time coding (STC)) [3], [4], or to boost the data rate by transmitting independent streams from each transmit antenna (as in V-BLAST (vertical Bell Labs layered space-time)) [5], [6], or to achieve both of them at the same time at the expense of increasing complexity [7]....

    [...]

Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations


"Trellis Coded Spatial Modulation" refers background in this paper

  • ...The aim is to improve power efficiency by maximizing spatial diversity (as in space-time coding (STC)) [3], [4], or to boost the data rate by transmitting independent streams from each transmit antenna (as in V-BLAST (vertical Bell Labs layered space-time)) [5], [6], or to achieve both of them at the same time at the expense of increasing complexity [7]....

    [...]

Book
01 Jan 2004
TL;DR: The book gives many numerical illustrations expressed in large collections of system performance curves, allowing the researchers or system designers to perform trade-off studies of the average bit error rate and symbol error rate.
Abstract: noncoherent communication systems, as well as a large variety of fading channel models typical of communication links often found in the real world, including single- and multichannel reception with a large variety of types. The book gives many numerical illustrations expressed in large collections of system performance curves, allowing the researchers or system designers to perform trade-off studies of the average bit error rate and symbol error rate. This book is a very good reference book for researchers and communication engineers and may also be a source for supplementary material of a graduate course on communication or signal processing. Nowadays, many new books attach a CD-ROM for more supplementary material. With the many numerical examples in this book, it appears that an attached CD-ROM would be ideal for this book. It would be even better to present the computer program in order to be interactive so that the readers can plug in their arbitrary parameters for the performance evaluation. —H. Hsu

6,469 citations