scispace - formally typeset
Journal ArticleDOI

Triboelectric nanogenerator built inside shoe insole for harvesting walking energy

Reads0
Chats0
TLDR
In this paper, a simple fabrication, great performance and cost-effective triboelectric nanogenerator (TENG), which is based on the cycled contact-separation between a polydimethylsiloxane (PDMS) film and a polyethylene terephthalate (PET) film, for effectively harvesting footfall energy.
About
This article is published in Nano Energy.The article was published on 2013-09-01. It has received 326 citations till now.

read more

Citations
More filters
Journal ArticleDOI

Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors

TL;DR: A comprehensive review of the four modes, their theoretical modelling, and the applications of TENGs for harvesting energy from human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water and more as well as self-powered sensors is provided in this article.
Journal ArticleDOI

Recent Progress in Electronic Skin.

TL;DR: To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs that can map pressure with high resolution and rapid response beyond that of human perception.
Journal ArticleDOI

Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator

TL;DR: In this article, both TENG-enabled vibration energy harvesting and self-powered active sensing are comprehensively reviewed and problems pressing for solutions and onward research directions are also posed to deliver a coherent picture.
Journal ArticleDOI

A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics.

TL;DR: A novel integrated power unit realizes both energy harvesting and energy storage by a textile triboelectric nanogenerator (TENG)-cloth and a flexible lithium-ion battery (LIB) belt, respectively.
Journal ArticleDOI

Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System

TL;DR: Human skin based triboelectric nanogenerators (TENGs) that can either harvest biomechanical energy or be utilized as a self-powered tactile sensor system for touch pad technology are reported.
References
More filters
Journal ArticleDOI

Nanostructured materials for advanced energy conversion and storage devices

TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Flexible triboelectric generator

TL;DR: In this article, the authors demonstrate a simple, low cost and effective approach of using the charging process in friction to convert mechanical energy into electric power for driving small electronics, which is fabricated by stacking two polymer sheets made of materials having distinctly different triboelectric characteristics, with metal films deposited on the top and bottom of the assembled structure.
Journal ArticleDOI

Coaxial silicon nanowires as solar cells and nanoelectronic power sources

TL;DR: These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Journal ArticleDOI

Direct-current nanogenerator driven by ultrasonic waves

TL;DR: A nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output and offers a potential solution for powering nanodevices and nanosystems.
Related Papers (5)