scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.

01 Nov 1987-Analytical Biochemistry (Anal Biochem)-Vol. 166, Iss: 2, pp 368-379
TL;DR: A discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) system for the separation of proteins in the range from 1 to 100 kDa is described, and the omission of glycine and urea prevents disturbances which might occur in the course of subsequent amino acid sequencing.
About: This article is published in Analytical Biochemistry.The article was published on 1987-11-01. It has received 11290 citations till now. The article focuses on the topics: Gel electrophoresis & Tricine.
Citations
More filters
Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: The percentage recovery of functional activity depended on the respective protein complex studied and was zero for some complexes, but almost quantitative for others, and the recovery of all respiratory chain complexes was almost quantitative.

2,261 citations

Journal ArticleDOI
04 Aug 1994-Nature
TL;DR: The role of TGF-β binds directly to receptor II, which is a constitutively active kinase, and phosphorylation allows receptor I to propagate the signal to downstream substrates, providing a mechanism by which a cytokine can generate the first step of a signalling cascade.
Abstract: Transforming growth factor-β (TGF-β) signals by contacting two distantly related transmem-brane serine/threonine kinases called receptors I and II. The role of these molecules in signalling has now been determined. TGF-β binds directly to receptor II, which is a constitutively active kinase. Bound TGF-β is then recognized by receptor I which is recruited into the complex and becomes phosphorylated by receptor II. Phosphorylation allows receptor I to propagate the signal to downstream substrates. This provides a mechanism by which a cytokine can generate the first step of a signalling cascade.

2,254 citations

Journal ArticleDOI
TL;DR: A protocol for Tricine–SDS-PAGE is described, which includes efficient methods for Coomassie blue or silver staining and electroblotting, thereby increasing the versatility of the approach.
Abstract: Tricine–SDS-PAGE is commonly used to separate proteins in the mass range 1–100 kDa. It is the preferred electrophoretic system for the resolution of proteins smaller than 30 kDa. The concentrations of acrylamide used in the gels are lower than in other electrophoretic systems. These lower concentrations facilitate electroblotting, which is particularly crucial for hydrophobic proteins. Tricine–SDS-PAGE is also used preferentially for doubled SDS-PAGE (dSDS-PAGE), a proteomic tool used to isolate extremely hydrophobic proteins for mass spectrometric identification, and it offers advantages for resolution of the second dimension after blue-native PAGE (BN-PAGE) and clear-native PAGE (CN-PAGE). Here I describe a protocol for Tricine–SDS-PAGE, which includes efficient methods for Coomassie blue or silver staining and electroblotting, thereby increasing the versatility of the approach. This protocol can be completed in 1–2 d. *Note: In the version of the article initially published online, the words “Gel buffer (3x)” were missing in the table on page 18. The error has been corrected in all versions of the article.

2,222 citations

Journal ArticleDOI
TL;DR: Tissue transglutaminase is identified as the unknown endomysial autoantigen of celiac disease, and gliadin is a preferred substrate for this enzyme, giving rise to novel antigenic epitopes.
Abstract: Celiac disease is characterized by small intestinal damage with loss of absorptive villi and hyperplasia of the crypts, typically leading to malabsorption. In addition to nutrient deficiencies, prolonged celiac disease is associated with an increased risk for malignancy, especially intestinal T-cell lymphoma. Celiac disease is precipitated by ingestion of the protein gliadin, a component of wheat gluten, and usually resolves on its withdrawal. Gliadin initiates mucosal damage which involves an immunological process in individuals with a genetic predisposition. However, the mechanism responsible for the small intestinal damage characteristic of celiac disease is still under debate. Small intestinal biopsy with the demonstration of a flat mucosa which is reversed on a gluten-free diet is considered the main approach for diagnosis of classical celiac disease. In addition, IgA antibodies against gliadin and endomysium, a structure of the smooth muscle connective tissue, are valuable tools for the detection of patients with celiac disease and for therapy control. Incidence rates of childhood celiac disease range from 1:300 in Western Ireland to 1:4700 in other European countries, and subclinical cases detected by serological screening revealed prevalences of 3.3 and 4 per 1000 in Italy and the USA, respectively. IgA antibodies to endomysium are particularly specific indicators of celiac disease, suggesting that this structure contains one or more target autoantigens that play a role in the pathogenesis of the disease. However, the identification of the endomysial autoantigen(s) has remained elusive. We identified tissue transglutaminase as the unknown endomysial autoantigen. Interestingly, gliadin is a preferred substrate for this enzyme, giving rise to novel antigenic epitopes.

1,931 citations

References
More filters
Journal ArticleDOI
15 Aug 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

232,912 citations

Journal Article
01 Jan 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

203,017 citations

Journal ArticleDOI
TL;DR: The technique of disc electrophoresis has been presented, including a discussion of the technical variables with special reference to the separation of protein fractions of normal human serum.
Abstract: Summary The technique of disc electrophoresis has been presented, including a discussion of the technical variables with special reference to the separation of protein fractions of normal human serum.

17,771 citations

Journal ArticleDOI
TL;DR: Some mechanisms that provide a rationale for the resolution afforded by zone electrophoresis in many gels will be detailed; the theory of some new modifications of zone electophoresis that have been designed to take maximum advantage of these mechanisms will be developed.
Abstract: Although electrophoresis is one of the most effective methods for the separation of ionic components of a mixture, the resolving power of different electrophoretic methods is quite variable. To separate two component ions, it is necessary to permit migration to continue until one of the kinds of ions has traveled at least one thickness of the volumes that it initially occupied (the starting zone) further than the other. However, the sharpness, and therefore the resolution, of the zones occupied by each ion diminishes with time because of the spreading of the zones as a result of diffusion. Remarkable resolution has been achieved when advantage is taken of the frictional properties of gels to aid separation by seiving at the molecular level (see Smithies’). A new method, disc electrophoresis, t has been designed that takes advantage of the adjustability of the pore size of a synthetic gel and that automatically produces starting zones of the order of 10 microns thickness from initial volumes with thicknesses of the order of centimeters. High resolution is thus achieved in very brief runs. With this technique, over 20 serum proteins are routinely separated from a sample of whole human serum as small as one microliter in a 20-minute run (see FIGURE 1) . Direct analysis of even very dilute samples becomes routine because the various ions are automatically concentrated to fixed high values at the beginning of the run just prior to separation. Preliminary laboratory studies and theoretic considerations provide evidence of the applicability of this technique to a wide range of ionic species for both analytic and large-scale preparative purposes. Theory has also provided the basis for a simple application of disc electrophoresis to the simultaneous determination of both the free mobility and the aqueous diffusion constant of a protein. This report will detail some mechanisms that provide a rationale for the resolution afforded by zone electrophoresis in many gels; will develop the theory of some new modifications of zone electrophoresis that have been designed to take maximum advantage of these mechanisms; and will provide some examples of the results that disc electrophoresis has produced.

4,255 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations