scispace - formally typeset
Open accessJournal ArticleDOI: 10.18632/ONCOTARGET.27877

Tumor mutational burden as a predictor of immunotherapy response in breast cancer.

02 Mar 2021-Oncotarget (Impact Journals, LLC)-Vol. 12, Iss: 5, pp 394-400
Abstract: Tumor mutational burden (TMB) is a promising tool to help define patients with triple-negative breast cancer (TNBC) most likely to benefit from immune checkpoint blockade (ICB) therapies. Roughly reflecting the degree of neo-antigens that tumors present to immune cells, TMB associates with multiple measures of tumoral immunogenicity and has proven clinically useful in cancers with relatively high mutation burden. TNBC carries higher TMB than other breast cancer subtypes, and recent data suggest that high-TMB TNBC cases may derive particular benefit from ICB in combination with chemotherapy (GeparNuevo, IMpassion130) or even ICB alone (KEYNOTE-119, TAPUR). Given the recent approval of pembrolizumab and atezolizumab in combination with chemotherapy for PD-L1-positive, metastatic TNBC, standardizing TMB calculation methods and cut-off values is of critical importance to deploy this clinical biomarker.

... read more

Topics: Atezolizumab (57%), Breast cancer (54%), Pembrolizumab (54%) ... show more
Citations
  More

7 results found


Journal ArticleDOI: 10.1093/JNCI/DJAB121
Abstract: Triple-negative breast cancer (TNBC) accounts for approximately 12% to 17% of all breast cancers and has an aggressive clinical behavior. Increased tumor-infiltrating lymphocyte counts are prognostic for survival in TNBC, making this disease a potential target for cancer immunotherapy (CIT). Research on immunophenotyping of tumor-infiltrating lymphocytes is revealing molecular and structural organization in the tumor microenvironment that may predict patient prognosis. The anti-programmed death-ligand 1 (PD-L1) antibody atezolizumab plus nab-paclitaxel was the first CIT combination to demonstrate progression-free survival benefit and clinically meaningful overall survival benefit in the first-line treatment of metastatic TNBC (mTNBC) in patients with PD-L1-expressing tumor-infiltrating immune cells (IC) in ≥ 1% of the tumor area. This led to its US and EU approval for mTNBC and US approval of the VENTANA PD-L1 (SP142) assay as a companion diagnostic immunohistochemistry (IHC) assay. Subsequently, the anti- programmed death-1 (PD-1) antibody pembrolizumab plus chemotherapy was approved by the FDA for mTNBC based on progression-free survival benefit in patients with a combined positive score ≥10 by its concurrently approved 22C3 companion diagnostic assay. Treatment guidelines now recommend PD-L1 testing for patients with mTNBC, and the testing landscape will likely become increasingly complex as new anti-PD-L1/PD-1 agents and diagnostics are approved for TNBC. Integrating PD-L1 testing into current diagnostic workflows for mTNBC may provide more treatment options for these patients. Therefore, it is critical for medical oncologists and pathologists to understand the available assays and their relevance to therapeutic options to develop an appropriate workflow for IHC testing.

... read more

Topics: Companion diagnostic (56%), Atezolizumab (55%), Pembrolizumab (53%) ... show more

2 Citations


Journal ArticleDOI: 10.1080/13543784.2021.1972968
Abstract: Introduction Immunotherapy through the blockade of PD1-PDL1 axis has shown to improve outcomes in advanced and early triple negative breast cancer (TNBC). To further enhance immune-stimulation, and ultimately improve patient outcomes, a wide variety of next-generation immunotherapies (NGIO) is being developed for this disease. Areas covered In the present article, we discuss the immune landscape of TNBC and recapitulate the rationale and available clinical evidence of NGIO under early phase development for TNBC, highlighting challenges and opportunities in this emerging field of research. Expert opinion Multiple immunotherapeutic strategies beyond PD-(L)1 blockade have been tested for TNBC, including the targeting of further inhibitory checkpoints, the agonism of costimulatory molecules, the intratumoral administration of immunotherapies and cancer vaccines. Most of these strategies have demonstrated to be safe in early clinical trials, with some exhibiting early signs of antitumor activity. To optimally harness the potential of NGIO, a refined patient selection based on emerging immune biomarkers will be required, through an adaptation of immunotherapeutic strategies based on patient and tumor characteristics. More mature data from ongoing clinical trials, added to the progressively increasing knowledge on breast cancer immune landscape, will hopefully clarify the role of NGIO for the treatment of TNBC.

... read more

1 Citations


Open accessJournal ArticleDOI: 10.1016/J.ESMOOP.2021.100257
01 Oct 2021-
Abstract: Therapies that modulate immune response to cancer, such as immune checkpoint inhibitors, began an intense development a few years ago; however, in breast cancer (BC), the results have been relatively disappointing so far. Finding biomarkers for better selection of BC patients for various immunotherapies remains a significant unmet medical need. At present, only tumour tissue programmed death-ligand 1 (PD-L1) and mismatch repair deficiency status are approved as theranostic biomarkers for programmed cell death-1 (PD-1)/PD-L1 inhibitors in BC. However, due to the complexity of tumour microenvironment (TME) and cancer response to immunomodulators, none of them is a perfect selector. Therefore, an intense quest is ongoing for complementary tumour- or host-related predictive biomarkers in breast immuno-oncology. Among the upcoming biomarkers, quantity, immunophenotype and spatial distribution of tumour-infiltrating lymphocytes and other TME cells as well as immune gene signatures emerge as most promising and are being increasingly tested in clinical trials. Biomarkers or strategies allowing dynamic assessment of BC response to immunotherapy, such as circulating/exosomal PD-L1, quantity of white/immune blood cell subpopulations and molecular imaging are particularly suitable for immunotreatment monitoring. Finally, host-related factors, such as microbiome and lifestyle, should also be taken into account when planning integration of immunomodulating therapies into BC management. As none of the biomarkers taken separately is accurate enough, the solution could come from composite biomarkers, which would combine clinical, molecular and immunological features of the disease, possibly powered by artificial intelligence.

... read more

Topics: Immunotherapy (54%), Cancer (51%)

Open accessJournal ArticleDOI: 10.3390/CANCERS13215348
26 Oct 2021-Cancers
Abstract: Understanding of the genetic mechanisms and identification of the biological markers of tumor progression that form the individual molecular phenotype of transformed cells can characterize the degree of tumor malignancy, the ability to metastasize, the hormonal sensitivity, and the effectiveness of chemotherapy, etc. Breast cancer (BC) is a genetically heterogeneous disease with different molecular biological and clinical characteristics. The available knowledge about the genetic heterogeneity of the most aggressive molecular subtype of breast cancer-triple-negative (TN)-has led to discoveries in drug treatment, including the use of DNA damaging agents (platinum and PARP inhibitors) for these tumors, as well as the use of immunotherapy. Most importantly, the ability to prescribe optimal drug treatment regimens for patients with TNBC based on knowledge of the molecular-genetic characteristics of this subtype of BC will allow the achievement of high rates of overall and disease-free survival. Thus, identification of the molecular-genetic phenotype of breast cancer is an important prognostic factor of the disease and allows personalization of the patient's treatment.

... read more

Topics: Triple-negative breast cancer (58%), Breast cancer (58%), Tumor progression (53%) ... show more

Open accessPosted ContentDOI: 10.1101/2021.11.19.21266466
21 Nov 2021-medRxiv
Abstract: PURPOSE: Cancer neoantigens are important targets of cancer immunotherapy. Neoantigen vaccines have the potential to induce or enhance highly specific antitumor immune responses with minimal risk of autoimmunity. We have developed a neoantigen DNA vaccine platform capable of efficiently presenting both HLA class I and II epitopes. To test the safety, feasibility and efficacy of this platform, we performed a phase 1 clinical trial in triple negative breast cancer patients with persistent disease following neoadjuvant chemotherapy, a patient population at high risk of disease recurrence. EXPERIMENTAL DESIGN: Expressed somatic mutations were identified by tumor/normal exome sequencing and tumor RNA sequencing. The pVACtools software suite was used to identify and prioritize cancer neoantigens. Neoantigen DNA vaccines were designed and manufactured in an academic GMP facility at Washington University School of Medicine. Neoantigen DNA vaccines were administered via electroporation following completion of standard of care therapy. Safety was measured by clinical and laboratory evaluation. Immune responses were assessed by ELISPOT, flow cytometry and TCR sequencing. RESULTS: 18 subjects received three doses of a personalized neoantigen DNA vaccine encoding on average 11 neoantigens per patient (range 4-20). The vaccinations were well tolerated with limited adverse events, primarily related to injection site reactions. Neoantigen-specific immune responses were induced in 16/18 patients as measured by ELISPOT and flow cytometry. At a median follow-up of 36 months, progression-free survival was 87.5% (95% CI: 72.7-100%) in the cohort of vaccinated patients compared to 49% (95% CI: 36.4-65.9%) in a cohort of institutional historical control patients (p=0.011). CONCLUSIONS: Neoantigen DNA vaccines are safe, feasible, and capable of inducing a neoantigen-specific immune response. There is preliminary evidence of improved disease-free survival compared to historical controls.

... read more

Topics: Cancer (51%)

References
  More

48 results found


Open accessJournal ArticleDOI: 10.1038/NRC3239
Drew M. Pardoll1Institutions (1)
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

... read more

Topics: Checkpoint Blockade Immunotherapy (60%), Immune checkpoint (60%), Immunosurveillance (54%) ... show more

8,577 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA1500596
Dung T. Le, Jennifer N. Uram1, Hao Wang2, Bjarne Bartlett3  +33 moreInstitutions (6)
Abstract: BackgroundSomatic mutations have the potential to encode “non-self” immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade. MethodsWe conducted a phase 2 study to evaluate the clinical activity of pembrolizumab, an anti–programmed death 1 immune checkpoint inhibitor, in 41 patients with progressive metastatic carcinoma with or without mismatch-repair deficiency. Pembrolizumab was administered intravenously at a dose of 10 mg per kilogram of body weight every 14 days in patients with mismatch repair–deficient colorectal cancers, patients with mismatch repair–proficient colorectal cancers, and patients with mismatch repair–deficient cancers that were not colorectal. The coprimary end points were the immune-related objective response rate and the 20-week immune-related progression-free survival rate. ResultsThe immune-related objective response rate and immune-related progression-free survival ...

... read more

Topics: Pembrolizumab (55%), PMS2 (54%), Immune checkpoint (54%) ... show more

5,399 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.AAA1348
03 Apr 2015-Science
Abstract: Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.

... read more

Topics: Pembrolizumab (58%), Lung cancer (57%), T cell (54%) ... show more

5,020 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA1104621
Caroline Robert1, Luc Thomas, Igor Bondarenko, Steven J. O'Day  +20 moreInstitutions (13)
Abstract: A B S T R AC T Background Ipilimumab monotherapy (at a dose of 3 mg per kilogram of body weight), as compared with glycoprotein 100, improved overall survival in a phase 3 study involving patients with previously treated metastatic melanoma. We conducted a phase 3 study of ipilimumab (10 mg per kilogram) plus dacarbazine in patients with previously untreated metastatic melanoma. Methods We randomly assigned 502 patients with previously untreated metastatic melanoma, in a 1:1 ratio, to ipilimumab (10 mg per kilogram) plus dacarbazine (850 mg per square meter of body-surface area) or dacarbazine (850 mg per square meter) plus placebo, given at weeks 1, 4, 7, and 10, followed by dacarbazine alone every 3 weeks through week 22. Patients with stable disease or an objective response and no doselimiting toxic effects received ipilimumab or placebo every 12 weeks thereafter as maintenance therapy. The primary end point was overall survival. Results Overall survival was significantly longer in the group receiving ipilimumab plus dacarbazine than in the group receiving dacarbazine plus placebo (11.2 months vs. 9.1 months, with higher survival rates in the ipilimumab–dacarbazine group at 1 year (47.3% vs. 36.3%), 2 years (28.5% vs. 17.9%), and 3 years (20.8% vs. 12.2%) (hazard ratio for death, 0.72; P<0.001). Grade 3 or 4 adverse events occurred in 56.3% of patients treated with ipilimumab plus dacarbazine, as compared with 27.5% treated with dacarbazine and placebo (P<0.001). No drug-related deaths or gastrointestinal perforations occurred in the ipilimumab–dacarbazine group. Conclusions Ipilimumab (at a dose of 10 mg per kilogram) in combination with dacarbazine, as compared with dacarbazine plus placebo, improved overall survival in patients with previously untreated metastatic melanoma. The types of adverse events were consistent with those seen in prior studies of ipilimumab; however, the rates of elevated liver-function values were higher and the rates of gastrointestinal events were lower than expected on the basis of prior studies. (Funded by Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00324155.)

... read more

Topics: Dacarbazine (59%), Ipilimumab (52%)

3,753 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA1406498
Alexandra Snyder1, Vladimir Makarov1, Taha Merghoub1, Jianda Yuan2  +18 moreInstitutions (4)
Abstract: To the Editor: We are writing to provide clarification and correction to our article “Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma” (Dec. 4, 2014, issue).1 Along with the publication, additional information on the data and methods that we used were posted in an online Supplementary Appendix, available with the full text of the article at NEJM.org. Some readers were confused by our incomplete description of part of the data analysis and our use of the term “validation set.” We acknowledge that our use of “validation set” was not appropriate in the context of the search for a . . .

... read more

2,905 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20217