scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tuned thalamic excitation is amplified by visual cortical circuits

01 Sep 2013-Nature Neuroscience (Nature Research)-Vol. 16, Iss: 9, pp 1315-1323
TL;DR: The results indicate that tuning of thalamic excitation is unlikely to be imparted by direction- or orientation-selectiveThalamic neurons and that a principal role of cortical circuits is to amplify tuned thalamus and cortex excitation.
Abstract: Cortical neurons in thalamic recipient layers receive excitation from the thalamus and the cortex. The relative contribution of these two sources of excitation to sensory tuning is poorly understood. We optogenetically silenced the visual cortex of mice to isolate thalamic excitation onto layer 4 neurons during visual stimulation. Thalamic excitation contributed to a third of the total excitation and was organized in spatially offset, yet overlapping, ON and OFF receptive fields. This receptive field structure predicted the orientation tuning of thalamic excitation. Finally, both thalamic and total excitation were similarly tuned to orientation and direction and had the same temporal phase relationship to the visual stimulus. Our results indicate that tuning of thalamic excitation is unlikely to be imparted by direction- or orientation-selective thalamic neurons and that a principal role of cortical circuits is to amplify tuned thalamic excitation.
Citations
More filters
Journal ArticleDOI
TL;DR: This Historical Commentary reflects on the scientific landscape of this decade-long transition between microbial opsin engineering and modular genetic methods for cell-type targeting, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond.
Abstract: Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005-2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.

956 citations

Journal ArticleDOI
07 Nov 2013-Nature
TL;DR: Research is beginning to reveal how the connectivity of individual neurons relates to the sensory features they encode, how differences in the connectivity patterns of different cortical cell classes enable them to encode information using different strategies, and how feedback connections from higher-order cortex allow sensory information to be integrated with behavioural context.
Abstract: The sensory cortex contains a wide array of neuronal types, which are connected together into complex but partially stereotyped circuits. Sensory stimuli trigger cascades of electrical activity through these circuits, causing specific features of sensory scenes to be encoded in the firing patterns of cortical populations. Recent research is beginning to reveal how the connectivity of individual neurons relates to the sensory features they encode, how differences in the connectivity patterns of different cortical cell classes enable them to encode information using different strategies, and how feedback connections from higher-order cortex allow sensory information to be integrated with behavioural context.

528 citations

Journal ArticleDOI
19 Feb 2015-Nature
TL;DR: The results show that the apparently complex organization of excitatory connection strength reflects the similarity of neuronal responses, and suggest that rare, strong connections mediate stimulus-specific response amplification in cortical microcircuits.
Abstract: The strength of synaptic connections fundamentally determines how neurons influence each other's firing. Excitatory connection amplitudes between pairs of cortical neurons vary over two orders of magnitude, comprising only very few strong connections among many weaker ones. Although this highly skewed distribution of connection strengths is observed in diverse cortical areas, its functional significance remains unknown: it is not clear how connection strength relates to neuronal response properties, nor how strong and weak inputs contribute to information processing in local microcircuits. Here we reveal that the strength of connections between layer 2/3 (L2/3) pyramidal neurons in mouse primary visual cortex (V1) obeys a simple rule--the few strong connections occur between neurons with most correlated responses, while only weak connections link neurons with uncorrelated responses. Moreover, we show that strong and reciprocal connections occur between cells with similar spatial receptive field structure. Although weak connections far outnumber strong connections, each neuron receives the majority of its local excitation from a small number of strong inputs provided by the few neurons with similar responses to visual features. By dominating recurrent excitation, these infrequent yet powerful inputs disproportionately contribute to feature preference and selectivity. Therefore, our results show that the apparently complex organization of excitatory connection strength reflects the similarity of neuronal responses, and suggest that rare, strong connections mediate stimulus-specific response amplification in cortical microcircuits.

483 citations

Journal ArticleDOI
21 Apr 2016-Nature
TL;DR: Physiological imaging and large-scale electron microscopy are combined to study an excitatory network in superficial mouse visual cortex and found that layer 2/3 neurons organized into subnetworks defined by anatomical connectivity, with more connections within than between groups.
Abstract: Circuits in the cerebral cortex consist of thousands of neurons connected by millions of synapses. A precise understanding of these local networks requires relating circuit activity with the underlying network structure. For pyramidal cells in superficial mouse visual cortex (V1), a consensus is emerging that neurons with similar visual response properties excite each other, but the anatomical basis of this recurrent synaptic network is unknown. Here we combined physiological imaging and large-scale electron microscopy to study an excitatory network in V1. We found that layer 2/3 neurons organized into subnetworks defined by anatomical connectivity, with more connections within than between groups. More specifically, we found that pyramidal neurons with similar orientation selectivity preferentially formed synapses with each other, despite the fact that axons and dendrites of all orientation selectivities pass near (<5 μm) each other with roughly equal probability. Therefore, we predict that mechanisms of functionally specific connectivity take place at the length scale of spines. Neurons with similar orientation tuning formed larger synapses, potentially enhancing the net effect of synaptic specificity. With the ability to study thousands of connections in a single circuit, functional connectomics is proving a powerful method to uncover the organizational logic of cortical networks.

456 citations


Cites background from "Tuned thalamic excitation is amplif..."

  • ...Further, we demonstrate (3) an anatomical substrate of functionally specific connections between neurons, and (4) that this specificity does not result from the spatial arrangement of the neuropil, but instead must operate at the scale of dendritic spines (< 1 – 5 μm)....

    [...]

Journal ArticleDOI
09 Aug 2019-Science
TL;DR: This study developed and implemented several key technological advances that together enable writing neural activity into dozens of single neurons in mouse V1 at physiological time scales and developed an experimental approach to drive large numbers of individually specified neurons, distributed across V1 volumes and targeted on the basis of natural response-selectivity properties observed during specific visual stimuli.
Abstract: INTRODUCTION Perceptual experiences in mammals may arise from patterns of neural circuit activity in cerebral cortex. For example, primary visual cortex (V1) is causally capable of initiating visual perception; in human neurosurgery patients, V1 electrical microstimulation has been reported to elicit basic visual percepts including spots of light, patterns, shapes, motions, and colors. Related phenomena have been studied in laboratory animals using similar electrical stimulation procedures, although detailed investigation has been difficult because studies of percept initiation in cortex have not involved groups of neurons individually selected for stimulation. Therefore, it is not clear how different percepts arise in cortex, nor why some stimuli fail to generate perceptual experiences. Answering these questions will require working with basic cellular elements within cortical circuit architecture during perception. RATIONALE To understand how circuits in V1 are specifically involved in visual perception, it is essential to probe, at the most basic cellular level, how behaviorally consequential percepts are initiated and maintained. In this study, we developed and implemented several key technological advances that together enable writing neural activity into dozens of single neurons in mouse V1 at physiological time scales. These methods also enabled us to simultaneously read out the impact of this stimulation on downstream network activity across hundreds of nearby neurons. Successful training of alert mice to discriminate the precisely defined circuit inputs enabled systematic investigation of basic cortical dynamics underlying perception. RESULTS We developed an experimental approach to drive large numbers of individually specified neurons, distributed across V1 volumes and targeted on the basis of natural response-selectivity properties observed during specific visual stimuli (movies of drifting horizontal or vertical gratings). To implement this approach, we built an optical read-write system capable of kilohertz speed, millimeter-scale lateral scope, and three-dimensional (3D) access across superficial to deep layers of cortex to tens or hundreds of individually specified neurons. This system was integrated with an unusual microbial opsin gene identified by crystal structure–based genome mining: ChRmine, named after the deep-red color carmine. This newly identified opsin confers properties crucial for cellular-resolution percept-initiation experiments: red-shifted light sensitivity, extremely large photocurrents alongside millisecond spike-timing fidelity, and compatibility with simultaneous two-photon Ca2+ imaging. Using ChRmine together with custom holographic devices to create arbitrarily specified light patterns, we were able to measure naturally occurring large-scale 3D ensemble activity patterns during visual experience and then replay these natural patterns at the level of many individually specified cells. We found that driving specific ensembles of cells on the basis of natural stimulus-selectivity resulted in recruitment of a broad network with dynamical patterns corresponding to those elicited by real visual stimuli and also gave rise to the correctly selective behaviors even in the absence of visual input. This approach allowed mapping of the cell numbers, layers, network dynamics, and adaptive events underlying generation of behaviorally potent percepts in neocortex, via precise control over naturally occurring, widely distributed, and finely resolved temporal parameters and cellular elements of the corresponding neural representations. CONCLUSION The cortical population dynamics that emerged after optogenetic stimulation both predicted the correctly elicited behavior and mimicked the natural neural representations of visual stimuli.

396 citations

References
More filters
Journal ArticleDOI
TL;DR: The Psychophysics Toolbox is a software package that supports visual psychophysics and its routines provide an interface between a high-level interpreted language and the video display hardware.
Abstract: The Psychophysics Toolbox is a software package that supports visual psychophysics. Its routines provide an interface between a high-level interpreted language (MATLAB on the Macintosh) and the video display hardware. A set of example programs is included with the Toolbox distribution.

16,594 citations

Journal ArticleDOI
TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Abstract: What chiefly distinguishes cerebral cortex from other parts of the central nervous system is the great diversity of its cell types and interconnexions. It would be astonishing if such a structure did not profoundly modify the response patterns of fibres coming into it. In the cat's visual cortex, the receptive field arrangements of single cells suggest that there is indeed a degree of complexity far exceeding anything yet seen at lower levels in the visual system. In a previous paper we described receptive fields of single cortical cells, observing responses to spots of light shone on one or both retinas (Hubel & Wiesel, 1959). In the present work this method is used to examine receptive fields of a more complex type (Part I) and to make additional observations on binocular interaction (Part II). This approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours. In the past, the technique of recording evoked slow waves has been used with great success in studies of functional anatomy. It was employed by Talbot & Marshall (1941) and by Thompson, Woolsey & Talbot (1950) for mapping out the visual cortex in the rabbit, cat, and monkey. Daniel & Whitteiidge (1959) have recently extended this work in the primate. Most of our present knowledge of retinotopic projections, binocular overlap, and the second visual area is based on these investigations. Yet the method of evoked potentials is valuable mainly for detecting behaviour common to large populations of neighbouring cells; it cannot differentiate functionally between areas of cortex smaller than about 1 mm2. To overcome this difficulty a method has in recent years been developed for studying cells separately or in small groups during long micro-electrode penetrations through nervous tissue. Responses are correlated with cell location by reconstructing the electrode tracks from histological material. These techniques have been applied to

12,923 citations

Journal ArticleDOI
TL;DR: In this paper, the authors adapted the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons.
Abstract: Temporally precise, noninvasive control of activity in well-defined neuronal populations is a long-sought goal of systems neuroscience. We adapted for this purpose the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons. We demonstrate reliable, millisecond-timescale control of neuronal spiking, as well as control of excitatory and inhibitory synaptic transmission. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers.

4,411 citations

Journal ArticleDOI
TL;DR: It is demonstrated by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel, and may be used to depolarize small or large cells, simply by illumination.
Abstract: Microbial-type rhodopsins are found in archaea, prokaryotes, and eukaryotes. Some of them represent membrane ion transport proteins such as bacteriorhodopsin, a light-driven proton pump, or channelrhodopsin-1 (ChR1), a recently identified light-gated proton channel from the green alga Chlamydomonas reinhardtii. ChR1 and ChR2, a related microbial-type rhodopsin from C. reinhardtii, were shown to be involved in generation of photocurrents of this green alga. We demonstrate by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel. This channel opens rapidly after absorption of a photon to generate a large permeability for monovalent and divalent cations. ChR2 desensitizes in continuous light to a smaller steady-state conductance. Recovery from desensitization is accelerated by extracellular H+ and negative membrane potential, whereas closing of the ChR2 ion channel is decelerated by intracellular H+. ChR2 is expressed mainly in C. reinhardtii under low-light conditions, suggesting involvement in photoreception in dark-adapted cells. The predicted seven-transmembrane α helices of ChR2 are characteristic for G protein-coupled receptors but reflect a different motif for a cation-selective ion channel. Finally, we demonstrate that ChR2 may be used to depolarize small or large cells, simply by illumination.

2,519 citations

Journal ArticleDOI
25 Feb 2010-Neuron
TL;DR: The response properties of neurons in primary visual cortex of awake mice that were allowed to run on a freely rotating spherical treadmill with their heads fixed demonstrated powerful cell-type-specific modulation of visual processing by behavioral state in awake mice.

1,326 citations