scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.

TL;DR: The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.
Abstract: Nanoparticles of iron(II) triazole salts have been prepared from water−organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30−40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10−15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15−20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the colo...
Citations
More filters
Journal ArticleDOI
TL;DR: This critical review discusses recent work in the field of molecule-based spin crossover materials with a special focus on these emerging issues, including chemical synthesis, physical properties and theoretical aspects as well (223 references).
Abstract: Recently we assisted a strong renewed interest in the fascinating field of molecular spin crossover complexes by (1) the emergence of nanosized spin crossover materials through direct synthesis of coordination nanoparticles and nanopatterned thin films as well as by (2) the use of novel sophisticated high spatial and temporal resolution experimental techniques and theoretical approaches for the study of spatiotemporal phenomena in cooperative spin crossover systems. Besides generating new fundamental knowledge on size-reduction effects and the dynamics of the spin crossover phenomenon, this research aims also at the development of practical applications such as sensor, display, information storage and nanophotonic devices. In this critical review, we discuss recent work in the field of molecule-based spin crossover materials with a special focus on these emerging issues, including chemical synthesis, physical properties and theoretical aspects as well (223 references).

1,084 citations

Journal ArticleDOI
TL;DR: The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere, and the variety of physical techniques usually applied for their characterization.
Abstract: The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligoand polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.

586 citations

Journal ArticleDOI
TL;DR: The spin crossover (SCO) complexes can be switched between low (LS) and high spin (HS) magnetic states with the help of an external perturbation and are promising candidates for the realization of molecule-based electronic and spintronic components, such as switching and memory elements as discussed by the authors.

496 citations


Cites background from "Tuning size and thermal hysteresis ..."

  • ...5 nm and 6 nm sized particles of [Fe(trz)(H-trz)2]n (BF4)n complex, respectively [152]....

    [...]

  • ...observation of spherical [Fe(trz)(H-trz)2]n(BF4)n complex NPs reported in the previous studies [52,152] (Fig....

    [...]

Journal ArticleDOI
TL;DR: The observation of spin crossover with thermal hysteresis loops of more than a few Kelvin remains relatively uncommon and unpredictable, so is a relatively underdeveloped, but important, area for spin crossover, particularly for memory applications.
Abstract: The observation of spin crossover with thermal hysteresis loops of more than a few Kelvin remains relatively uncommon and unpredictable, so is a relatively underdeveloped, but important, area of spin crossover, particularly for memory applications. Lessons learnt regarding the origins, and the practicalities of the proper study and reporting, of thermal hysteresis loops are considered and explained, from a synthetic chemists perspective, after a general introduction to the field of spin crossover.

414 citations

Journal ArticleDOI
TL;DR: In this progress report, a brief overview on the current state-of-the-art of experimental and theoretical studies of nanomaterials displaying spin transition is presented, and detailed analysis and discussions in terms of finite size effects and other phenomena inherent to the reduced size scale are provided.
Abstract: Nanoscale spin crossover materials capable of undergoing reversible switching between two electronic configurations with markedly different physical properties are excellent candidates for various technological applications. In particular, they can serve as active materials for storing and processing information in photonic, mechanical, electronic, and spintronic devices as well as for transducing different forms of energy in sensors and actuators. In this progress report, a brief overview on the current state-of-the-art of experimental and theoretical studies of nanomaterials displaying spin transition is presented. Based on these results, a detailed analysis and discussions in terms of finite size effects and other phenomena inherent to the reduced size scale are provided. Finally, recent research devices using spin crossover complexes are highlighted, emphasizing both challenges and prospects.

352 citations

References
More filters
Journal ArticleDOI
TL;DR: The core algorithms of AUTOBK and FEFFIT have been combined with general data manipulation and interactive graphics into a single package, IFEFFIT, and a Graphical User Interface for rapid 'online' data analysis is demonstrated.
Abstract: IFEFFIT, an interactive program and scriptable library of XAFS algorithms is presented. The core algorithms of AUTOBK and FEFFIT have been combined with general data manipulation and interactive graphics into a single package. IFEFFIT comes with a command-line program that can be run either interactively or in batch-mode. It also provides a library of functions that can be used easily from C or Fortran, as well as high level scripting languages such as Tcl, Perl and Python. Using this library, a Graphical User Interface for rapid 'online' data analysis is demonstrated. IFEFFIT is freely available with an Open Source license. Outside use, development, and contributions are encouraged.

2,753 citations

Journal ArticleDOI
26 Sep 2003-Science
TL;DR: An ultrasensitive method for detecting protein analytes has been developed and comparable clinically accepted conventional assays for detecting the same target have sensitivity limits of ∼3 picomdar, six orders of magnitude less sensitive than what is observed with this method.
Abstract: An ultrasensitive method for detecting protein analytes has been developed. The system relies on magnetic microparticle probes with antibodies that specifically bind a target of interest [prostate-specific antigen (PSA) in this case] and nanoparticle probes that are encoded with DNA that is unique to the protein target of interest and antibodies that can sandwich the target captured by the microparticle probes. Magnetic separation of the complexed probes and target followed by dehybridization of the oligonucleotides on the nanoparticle probe surface allows the determination of the presence of the target protein by identifying the oligonucleotide sequence released from the nanoparticle probe. Because the nanoparticle probe carries with it a large number of oligonucleotides per protein binding event, there is substantial amplification and PSA can be detected at 30 attomolar concentration. Alternatively, a polymerase chain reaction on the oligonucleotide bar codes can boost the sensitivity to 3 attomolar. Comparable clinically accepted conventional assays for detecting the same target have sensitivity limits of ∼3 picomdar, six orders of magnitude less sensitive than what is observed with this method.

2,430 citations

Journal ArticleDOI
O.V. Salata1
TL;DR: This brief review tries to summarise the most recent developments in the field of applied nanomaterials, in particular their application in biology and medicine, and discusses their commercialisation prospects.
Abstract: Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. Their unique size-dependent properties make these materials superior and indispensable in many areas of human activity. This brief review tries to summarise the most recent developments in the field of applied nanomaterials, in particular their application in biology and medicine, and discusses their commercialisation prospects.

2,086 citations

Journal ArticleDOI
02 Jan 1998-Science
TL;DR: In this article, the transition temperature of transition metal compounds can be fine tuned using an approach based on the concept of a molecular alloy, and it is possible to design a compound for which room temperature falls in the middle of the thermal hysteresis loop.
Abstract: Some 3dn (4 ≤ n ≤ 7) transition metal compounds exhibit a cooperative transition between a low-spin (LS) and a high-spin (HS) state. This transition is abrupt and occurs with a thermal hysteresis, which confers a memory effect on the system. The intersite interactions and thus the cooperativity are magnified in polymeric compounds such as [Fe(Rtrz)3]A2·nH2O in which the Fe2+ ions are triply bridged by 4-R-substituted-1,2,4-triazole molecules. Moreover, in these compounds, the spin transition is accompanied by a well-pronounced change of color between violet in the LS state and white in the HS state. The transition temperatures of these materials can be fine tuned, using an approach based on the concept of a molecular alloy. In particular, it is possible to design a compound for which room temperature falls in the middle of the thermal hysteresis loop. These materials have many potential applications, for example, as temperature sensors, as active elements of various types of displays, and in information storage and retrieval.

1,934 citations

Journal ArticleDOI
TL;DR: The 1,2,4-triazole ligands have gained great attention as ligands to transition metals by the fact that they unite the coordination geometry of both pyrazoles and imidazoles, and in addition exhibit a strong and typical property of acting as bridging ligands between two metal centres.

760 citations