scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Turbulence statistics in fully developed channel flow at low reynolds number

01 Apr 1987-Journal of Fluid Mechanics (Cambridge University Press)-Vol. 177, Iss: -1, pp 133-166
TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.
Abstract: A direct numerical simulation of a turbulent channel flow is performed. The unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points. All essential turbulence scales are resolved on the computational grid and no subgrid model is used. A large number of turbulence statistics are computed and compared with the existing experimental data at comparable Reynolds numbers. Agreements as well as discrepancies are discussed in detail. Particular attention is given to the behavior of turbulence correlations near the wall. A number of statistical correlations which are complementary to the existing experimental data are reported for the first time.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Abstract: One major drawback of the eddy viscosity subgrid‐scale stress models used in large‐eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid‐scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid‐scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near‐wall region of a turbulent boundary layer. The results of large‐eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.

6,747 citations

Journal ArticleDOI
TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Abstract: We present an overview of the lattice Boltzmann method (LBM), a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities. The LBM is especially useful for modeling complicated boundary conditions and multiphase interfaces. Recent extensions of this method are described, including simulations of fluid turbulence, suspension flows, and reaction diffusion systems.

6,565 citations


Cites result from "Turbulence statistics in fully deve..."

  • ...Their simulation results, including mean stream-wise velocity profiles and rms velocities as functions of the distance from the wall, were compared with those reported by Kim et al (1987), showing good agreement....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present finite-difference schemes for the evaluation of first-order, second-order and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes.

5,832 citations

Journal ArticleDOI
TL;DR: The Navier-Stokes equations are well-known to be a good model for turbulence as discussed by the authors, and the results of well over a century of increasingly sophisticated experiments are available at our disposal.
Abstract: It has often been remarked that turbulence is a subject of great scientific and technological importance, and yet one of the least understood (e.g. McComb 1990). To an outsider this may seem strange, since the basic physical laws of fluid mechanics are well established, an excellent mathematical model is available in the Navier-Stokes equations, and the results of well over a century of increasingly sophisticated experiments are at our disposal. One major difficulty, of course, is that the governing equations are nonlinear and little is known about their solutions at high Reynolds number, even in simple geometries. Even mathematical questions as basic as existence and uniqueness are unsettled in three spatial dimensions (cf Temam 1988). A second problem, more important from the physical viewpoint, is that experiments and the available mathematical evidence all indicate that turbulence involves the interaction of many degrees of freedom over broad ranges of spatial and temporal scales. One of the problems of turbulence is to derive this complex picture from the simple laws of mass and momentum balance enshrined in the NavierStokes equations. It was to this that Ruelle & Takens (1971) contributed with their suggestion that turbulence might be a manifestation in physical

3,721 citations

Journal ArticleDOI
TL;DR: Wavelet transforms are recent mathematical techniques, based on group theory and square integrable representations, which allows one to unfold a signal, or a field, into both space and scale, and possibly directions.
Abstract: Wavelet transforms are recent mathematical techniques, based on group theory and square integrable representations, which allows one to unfold a signal, or a field, into both space and scale, and possibly directions. They use analyzing functions, called wavelets, which are localized in space. The scale decomposition is obtained by dilating or contracting the chosen analyzing wavelet before convolving it with the signal. The limited spatial support of wavelets is important because then the behavior of the signal at infinity does not play any role. Therefore the wavelet analysis or syn­ thesis can be performed locally on the signal, as opposed to the Fourier transform which is inherently nonlocal due to the space-filling nature of the trigonometric functions. Wavelet transforms have been applied mostly to signal processing, image coding, and numerical analysis, and they are still evolving. So far there are only two complete presentations of this topic, both written in French, one for engineers (Gasquet & Witomski 1 990) and the other for mathematicians (Meyer 1 990a), and two conference proceedings, the first in English (Combes et al 1 989), the second in French (Lemarie 1 990a). In preparation are a textbook (Holschneider 199 1 ), a course (Dau­ bee hies 1 99 1), three conference procecdings (Mcyer & Paul 199 1 , Beylkin et al 199 1b, Farge et al 1 99 1), and a special issue of IEEE Transactions

2,770 citations

References
More filters
Book
01 Jan 1972
TL;DR: In this paper, the authors present a reference record created on 2005-11-18, modified on 2016-08-08 and used for the analysis of turbulence and transport in the context of energie.
Abstract: Keywords: turbulence ; transport ; contraintes ; transport ; couche : limite ; ecoulement ; tourbillon ; energie Reference Record created on 2005-11-18, modified on 2016-08-08

8,276 citations

MonographDOI
01 Jan 1977
TL;DR: Spectral Methods Survey of Approximation Theory Review of Convergence Theory Algebraic Stability Spectral Methods Using Fourier Series Applications of algebraic stability analysis Constant Coefficient Hyperbolic Equations Time Differencing Efficient Implementation of Spectral Method as discussed by the authors.
Abstract: Spectral Methods Survey of Approximation Theory Review of Convergence Theory Algebraic Stability Spectral Methods Using Fourier Series Applications of Algebraic Stability Analysis Constant Coefficient Hyperbolic Equations Time Differencing Efficient Implementation of Spectral Methods Numerical Results for Hyperbolic Problems Advection-Diffusion Equation Models of Incompressible Fluid Dynamics Miscellaneous Applications of Spectral Methods Survey of Spectral Methods and Applications Properties of Chebyshev and Legendre Polynomial Expansions.

3,386 citations


"Turbulence statistics in fully deve..." refers methods in this paper

  • ...Equation (6) is solved by the Chebychev-tau method (Lanczos 1956; Gottlieb & Orszag 1977 ) for each wavenumber after it is Fourier transformed in the streamwise and spanwise directions....

    [...]

  • ...For the present numerical method, there is no difference between the two results, indicating that the pressure satisfies both the Neumann and the Dirichlet boundary conditions (Gottlieb & Orszag 1977; Moin & Kim 1980)....

    [...]

MonographDOI
01 Jan 1972
TL;DR: In this article, the authors discuss the Reynolds equations and estimate of the Reynolds stress in the kinetic theory of gases, and describe the effects of shear flow near a rigid wall.
Abstract: This chapter contains sections titled: The Reynolds equations, Elements of the kinetic theory of gases, Estimates of the Reynolds stress, Turbulent heat transfer, Turbulent shear flow near a rigid wall

3,270 citations

MonographDOI
01 Jan 1972
TL;DR: In this article, the probability density, Fourier transforms and characteristic functions, joint statistics and statistical independence, Correlation functions and spectra, the central limit theorem, and the relation functions are discussed.
Abstract: This chapter contains sections titled: The probability density, Fourier transforms and characteristic functions, Joint statistics and statistical independence, Correlation functions and spectra, The central limit theorem

3,260 citations

Journal ArticleDOI
TL;DR: In this article, the three-dimensional, primitive equations of motion have been integrated numerically in time for the case of turbulent, plane Poiseuille flow at very large Reynolds numbers.
Abstract: The three-dimensional, primitive equations of motion have been integrated numerically in time for the case of turbulent, plane Poiseuille flow at very large Reynolds numbers. A total of 6720 uniform grid intervals were used, with sub-grid scale effects simulated with eddy coefficients proportional to the local velocity deformation. The agreement of calculated statistics against those measured by Laufer ranges from good to marginal. The eddy shapes are examined, and only the u-component, longitudinal eddies are found to be elongated in the downstream direction. However, the lateral v eddies have distinct downstream tilts. The turbulence energy balance is examined, including the separate effects of vertical diffusion of pressure and local kinetic energy.It is concluded that the numerical approach to the problem of turbulence at large Reynolds numbers is already profitable, with increased accuracy to be expected with modest increase of numerical resolution.

1,868 citations


"Turbulence statistics in fully deve..." refers methods in this paper

  • ...Deardorff (1970) and Schumann (1973) performed three-dimensional computations of turbulent channel flow in which synthetic boundary conditions are used in the log layer, rather than the natural no-slip boundary condition, thereby avoiding explicit computation of the near-wall region....

    [...]