scispace - formally typeset
Journal ArticleDOI

Two decades of array signal processing research: the parametric approach

Reads0
Chats0
TLDR
The article consists of background material and of the basic problem formulation, and introduces spectral-based algorithmic solutions to the signal parameter estimation problem and contrast these suboptimal solutions to parametric methods.
Abstract
The quintessential goal of sensor array signal processing is the estimation of parameters by fusing temporal and spatial information, captured via sampling a wavefield with a set of judiciously placed antenna sensors. The wavefield is assumed to be generated by a finite number of emitters, and contains information about signal parameters characterizing the emitters. A review of the area of array processing is given. The focus is on parameter estimation methods, and many relevant problems are only briefly mentioned. We emphasize the relatively more recent subspace-based methods in relation to beamforming. The article consists of background material and of the basic problem formulation. Then we introduce spectral-based algorithmic solutions to the signal parameter estimation problem. We contrast these suboptimal solutions to parametric methods. Techniques derived from maximum likelihood principles as well as geometric arguments are covered. Later, a number of more specialized research topics are briefly reviewed. Then, we look at a number of real-world problems for which sensor array processing methods have been applied. We also include an example with real experimental data involving closely spaced emitters and highly correlated signals, as well as a manufacturing application example.

read more

Citations
More filters
Journal ArticleDOI

A sparse signal reconstruction perspective for source localization with sensor arrays

TL;DR: This work presents a source localization method based on a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold that has a number of advantages over other source localization techniques, including increased resolution, improved robustness to noise, limitations in data quantity, and correlation of the sources.
Journal ArticleDOI

Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations

TL;DR: This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them.
Journal ArticleDOI

Electromagnetic brain mapping

TL;DR: The underlying models currently used in MEG/EEG source estimation are described and the various signal processing steps required to compute these sources are described.
Journal ArticleDOI

Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom

TL;DR: A new array geometry, which is capable of significantly increasing the degrees of freedom of linear arrays, is proposed and a novel spatial smoothing based approach to DOA estimation is also proposed, which does not require the inherent assumptions of the traditional techniques based on fourth-order cumulants or quasi stationary signals.
Journal ArticleDOI

Network-based wireless location: challenges faced in developing techniques for accurate wireless location information

TL;DR: An overview of wireless location challenges and techniques with a special focus on network-based technologies and applications is provided.
References
More filters
Book

Matrix computations

Gene H. Golub
Journal ArticleDOI

ESPRIT-estimation of signal parameters via rotational invariance techniques

TL;DR: Although discussed in the context of direction-of-arrival estimation, ESPRIT can be applied to a wide variety of problems including accurate detection and estimation of sinusoids in noise.
Journal ArticleDOI

High-resolution frequency-wavenumber spectrum analysis

TL;DR: In this article, a high-resolution frequency-wavenumber power spectral density estimation method was proposed, which employs a wavenumber window whose shape changes and is a function of the wave height at which an estimate is obtained.
Journal ArticleDOI

Beamforming: a versatile approach to spatial filtering

TL;DR: An overview of beamforming from a signal-processing perspective is provided, with an emphasis on recent research.
Related Papers (5)