scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface.

TL;DR: Two-dimensional excitonic photoluminescence from graphene grown on a Cu(111) surface is reported, which shows an unexpected and remarkably sharp strong emission near 3.16 eV and as temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene.
Abstract: Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ≤3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene π and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.
Citations
More filters
Journal ArticleDOI
TL;DR: 2D features, defects, edges, and substrate effects of Gr are discussed first, and key insights into the functionalized Gr hybrid materials lead to the applications for not only energy storage and electrochemical catalysis, green chemistry, and electronic/spintronic devices but also biosensing and medical applications.
Abstract: This spotlight discusses intriguing properties and diverse applications of graphene (Gr) and Gr analogs. Gr has brought us two-dimensional (2D) chemistry with its exotic 2D features of density of states. Yet, some of the 2D or 2D-like features can be seen on surfaces and at interfaces of bulk materials. The substrate on Gr and functionalization of Gr (including metal decoration, intercalation, doping, and hybridization) modify the unique 2D features of Gr. Despite abundant literature on physical properties and well-known applications of Gr, spotlight works based on the conceptual understanding of the 2D physical and chemical nature of Gr toward vast-ranging applications are hardly found. Here we focus on applications of Gr, based on conceptual understanding of 2D phenomena toward 2D chemistry. Thus, 2D features, defects, edges, and substrate effects of Gr are discussed first. Then, to pattern Gr electronic circuits, insight into differentiating conducting and nonconducting regions is introduced. By utiliz...

54 citations

Journal ArticleDOI
TL;DR: In this paper, the angular dependencies of the polarized excitonic emissions with respect to b axis (Re4 diamond-chain direction) are determined using polarized micro-photoluminescence (μPL) measurement.

43 citations

Journal ArticleDOI
TL;DR: A review of the recent experimental works on the growth and the electronic properties of the graphene-metal interfaces is given in this article, where a link between huge amount of experimental and theoretical data allowing one to understand the influence of the metallic substrate on the electronic property of a graphene overlayer and how its properties can be modified in a controllable way.
Abstract: Graphene-metal interface as one of the interesting graphene-based objects attracts much attention from both application and fundamental science points of view. This paper gives a timely review of the recent experimental works on the growth and the electronic properties of the graphene-metal interfaces. This work makes a link between huge amount of experimental and theoretical data allowing one to understand the influence of the metallic substrate on the electronic properties of a graphene overlayer and how its properties can be modified in a controllable way. The further directions of studies and applications of the graphene-metal interfaces are discussed.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the bandgap engineering in layered InSe single crystals by substituting the Se atoms with S atoms, and the formation of InSxSe1-x single crystal alloy with x ≤ 0.3 is evidenced by the X-ray diffraction and resonant Raman spectra.
Abstract: Bandgap engineering offers opportunities for tailoring the properties of semiconductor materials for desired applications in microelectronics and optoelectronics. Alloys of different semiconductor materials can lead to the continuously tuning of the bandgap. Here, we report the bandgap engineering in layered InSe single crystals by substituting the Se atoms with S atoms. The formation of InSxSe1–x single crystal alloy with x ≤ 0.3 is evidenced by the X-ray diffraction and resonant Raman spectra. The photoluminescence (PL) spectra peak position blue shifts from ∼1.27 to ∼1.42 eV as S composition increases from 0 to 0.3 in the alloys, which is consistent with the bandgap shifts calculated by density functional theory. Temperature dependence of the PL spectra indicate that the presence of S atoms decreases the strength of the electron–phonon interaction but increases the average phonon energy in InSxSe1–x alloys. Our findings will open an intriguing avenue in understanding the fundamental physics in the III–...

18 citations

References
More filters
Journal ArticleDOI
TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Abstract: We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order ${\mathit{N}}_{\mathrm{atoms}}^{3}$ operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ``metric'' and a special ``preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order ${\mathit{N}}_{\mathrm{atoms}}^{2}$ scaling is found for systems containing up to 1000 electrons. If we take into account that the number of k points can be decreased linearly with the system size, the overall scaling can approach ${\mathit{N}}_{\mathrm{atoms}}$. We have implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable. \textcopyright{} 1996 The American Physical Society.

81,985 citations

Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations

Journal ArticleDOI
TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

13,474 citations

Trending Questions (1)
What phones run graphene?

This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.