scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light

02 Jan 2019-Journal of Materials Chemistry (The Royal Society of Chemistry)-Vol. 7, Iss: 2, pp 603-610
TL;DR: Wang et al. as discussed by the authors proposed 2D Janus PtSSe with compelling photocatalytic properties, which were investigated by means of first-principles calculations.
Abstract: Recently, two-dimensional Janus materials have attracted increasing research interest due to their particular structure and great potential in electronics, optoelectronics and piezoelectronics. Here, we propose 2D Janus PtSSe with compelling photocatalytic properties which were investigated by means of first-principles calculations. 2D Janus PtSSe exhibits high thermal, dynamic and mechanical stability. Most remarkably, single-layer PtSSe exhibits an indirect band gap of 2.19 eV, high absorption coefficients in the visible light region, appropriate band edge positions and strong ability for carrier separation and transfer, thus rendering it a promising candidate for photocatalytic water splitting. Moreover, double-layer PtSSe compounds with different stacking configurations are extraordinary photocatalysts for water splitting even under infrared light, owing to their small band gaps as well as the built-in electrical field. Our results reveal 2D PtSSe with high experimental feasibility as a new platform for the overall water splitting reaction.
Citations
More filters
Posted Content
TL;DR: In this article, a novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized.
Abstract: A novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe2 the top layer of selenium atoms are substituted by sulfur atoms while the bottom selenium layer remains intact. The peculiar structure of this new material is systematically investigated by Raman, photoluminescence and X-ray photoelectron spectroscopy and confirmed by transmission-electron microscopy and time-of-flight secondary ion mass spectrometry. Density-functional theory calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction (HER) activity is discovered for the Janus monolayer and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

649 citations

Journal ArticleDOI
TL;DR: The recent progress of emerging Janus 2D materials, including Janus graphene and van der Waals heterostructures, is presented in this article, where the investigations on the unique properties and potential device applications of Janus2D materials are summarized.
Abstract: Based on the extensive investigation on graphene and graphene derivatives asymmetrically functionalized with a variety of molecular groups and the concept of Janus materials with asymmetric facial properties, Janus two-dimensional (2D) materials as derivatives of the 2D material family, including Janus graphene, Janus transition metal chalcogenides, etc., have attracted much attention in recent years. Janus 2D materials have been demonstrated experimentally and theoretically to possess unique properties such as an out-of-plane piezoelectric polarization and strong Rashba effect due to their out-of-plane asymmetry. Here, the recent progress of emerging Janus 2D materials, including Janus graphene, prediction and fabrication of various different Janus 2D materials and Janus 2D van der Waals heterostructures, is presented. The investigations on the unique properties and potential device applications of Janus 2D materials are summarized. Finally, the conclusion and prospects for the future explorations on Janus 2D materials are also provided.

150 citations

Journal ArticleDOI
TL;DR: In this article, the A1g Raman active modes were identified using polarization measurements in the Raman setup and the peak positions of these modes were found to display a clear position and intensity dependence with film thickness, for multiple excitation wavelengths.
Abstract: Platinum diselenide (PtSe2) is a newly discovered 2D material which is of great interest for applications in electronics and catalysis. PtSe2 films were synthesized by thermally-assisted selenization of predeposited platinum films and scanning transmission electron microscopy revealed the crystal structure of these films to be 1T. Raman scattering of these films was studied as a function of film thickness, laser wavelength and laser polarization. Eg and A1g Raman active modes were identified using polarization measurements in the Raman setup. These modes were found to display a clear position and intensity dependence with film thickness, for multiple excitation wavelengths, and their peak positions agree with simulated phonon dispersion curves for PtSe2. These results highlight the practicality of using Raman spectroscopy as a prime characterization technique for newly-synthesized 2D materials.

136 citations

Journal ArticleDOI
TL;DR: Calculated results show that SnSSe monolayer has a very high power factor, making it a promising candidate for thermoelectric applications, and it exhibits dynamic and mechanical stability.
Abstract: The Janus structure, by combining properties of different transition metal dichalcogenide (TMD) monolayers in a single polar material, has attracted increasing research interest because of its particular structure and potential application in electronics, optoelectronics and piezoelectronics. In this work, Janus SnSSe monolayer is predicted by means of first-principles calculations, and it exhibits dynamic and mechanical stability. By using the generalized gradient approximation (GGA) and spin-orbit coupling (SOC), the Janus SnSSe monolayer is found to be an indirect band-gap semiconductor, whose gap can easily be tuned by strain. High carrier mobilities are obtained for SnSSe monolayer, and the hole mobility is higher than the electron mobility. For SnSSe monolayer, a uniaxial strain in the basal plane can induce both strong in-plane and much weaker out-of-plane piezoelectric polarizations, which reveals the potential as a piezoelectric two-dimensional (2D) material. High absorption coefficients in the visible light region are observed, suggesting a potential photocatalytic application. Calculated results show that SnSSe monolayer has a very high power factor, making it a promising candidate for thermoelectric applications. Our works reveal that the Janus SnSSe structure can be fabricated with unique electronic, optical, piezoelectric and transport properties, and can motivate related experimental works.

113 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Abstract: We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order ${\mathit{N}}_{\mathrm{atoms}}^{3}$ operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ``metric'' and a special ``preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order ${\mathit{N}}_{\mathrm{atoms}}^{2}$ scaling is found for systems containing up to 1000 electrons. If we take into account that the number of k points can be decreased linearly with the system size, the overall scaling can approach ${\mathit{N}}_{\mathrm{atoms}}$. We have implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable. \textcopyright{} 1996 The American Physical Society.

81,985 citations

Journal ArticleDOI
07 Jul 1972-Nature
TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Abstract: ALTHOUGH the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm (ref. 1).

27,819 citations

Journal ArticleDOI
TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Abstract: A new density functional (DF) of the generalized gradient approximation (GGA) type for general chemistry applications termed B97-D is proposed. It is based on Becke's power-series ansatz from 1997 and is explicitly parameterized by including damped atom-pairwise dispersion corrections of the form C(6) x R(-6). A general computational scheme for the parameters used in this correction has been established and parameters for elements up to xenon and a scaling factor for the dispersion part for several common density functionals (BLYP, PBE, TPSS, B3LYP) are reported. The new functional is tested in comparison with other GGAs and the B3LYP hybrid functional on standard thermochemical benchmark sets, for 40 noncovalently bound complexes, including large stacked aromatic molecules and group II element clusters, and for the computation of molecular geometries. Further cross-validation tests were performed for organometallic reactions and other difficult problems for standard functionals. In summary, it is found that B97-D belongs to one of the most accurate general purpose GGAs, reaching, for example for the G97/2 set of heat of formations, a mean absolute deviation of only 3.8 kcal mol(-1). The performance for noncovalently bound systems including many pure van der Waals complexes is exceptionally good, reaching on the average CCSD(T) accuracy. The basic strategy in the development to restrict the density functional description to shorter electron correlation lengths scales and to describe situations with medium to large interatomic distances by damped C(6) x R(-6) terms seems to be very successful, as demonstrated for some notoriously difficult reactions. As an example, for the isomerization of larger branched to linear alkanes, B97-D is the only DF available that yields the right sign for the energy difference. From a practical point of view, the new functional seems to be quite robust and it is thus suggested as an efficient and accurate quantum chemical method for large systems where dispersion forces are of general importance.

23,058 citations

Journal ArticleDOI
TL;DR: In this paper, a new hybrid density functional based on a screened Coulomb potential for the exchange interaction is proposed, which enables fast and accurate hybrid calculations, even of usually difficult metallic systems.
Abstract: Hybrid density functionals are very successful in describing a wide range of molecular properties accurately. In large molecules and solids, however, calculating the exact (Hartree–Fock) exchange is computationally expensive, especially for systems with metallic characteristics. In the present work, we develop a new hybrid density functional based on a screened Coulomb potential for the exchange interaction which circumvents this bottleneck. The results obtained for structural and thermodynamic properties of molecules are comparable in quality to the most widely used hybrid functionals. In addition, we present results of periodic boundary condition calculations for both semiconducting and metallic single wall carbon nanotubes. Using a screened Coulomb potential for Hartree–Fock exchange enables fast and accurate hybrid calculations, even of usually difficult metallic systems. The high accuracy of the new screened Coulomb potential hybrid, combined with its computational advantages, makes it widely applicable to large molecules and periodic systems.

13,446 citations