scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Two-stage seeded soft-X-ray free-electron laser

TL;DR: In this paper, a seeded free-electron laser with a two-stage harmonic upshift configuration provided tunable and coherent soft-X-ray pulses with energies of tens of microjoules and a low pulse-to-pulse wavelength jitter at wavelengths of 10.8 nm and below.
Abstract: A seeded free-electron laser with a two-stage harmonic upshift configuration provided tunable and coherent soft-X-ray pulses. The configuration produced single-transverse-mode, narrow-spectral-bandwidth femtosecond pulses with energies of several tens of microjoules and a low pulse-to-pulse wavelength jitter at wavelengths of 10.8 nm and below.
Citations
More filters
Journal ArticleDOI
TL;DR: The stimulated Raman adiabatic passage (STIRAP) was introduced by Gaubatz et al. as discussed by the authors, which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission.
Abstract: The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 (Gaubatz \emph{et al.}, J. Chem. Phys. \textbf{92}, 5363, 1990). Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2000, the time when the last major review on the topic was written (Vitanov \emph{et al.}, Adv. At. Mol. Opt. Phys. \textbf{46}, 55, 2001). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multi-level systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, precision experiments, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, etc.), and even some applications in classical physics (including waveguide optics, frequency conversion, polarization optics, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, and population transfer with X-ray pulses).

654 citations

Journal ArticleDOI
TL;DR: Time-resolved measurements of X-ray free-electron lasers are reported by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source to demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron andX-ray temporal characterization.
Abstract: Characterizing femtosecond X-ray pulses that vary from shot to shot is important for data interpretation. Here, Behrens et al. measure time-resolved lasing effects on the electron beam and extract the temporal profile of X-ray pulses using an X-band radiofrequency transverse deflector.

227 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the generation of isolated soft X-ray attosecond pulses with an Xray free-electron laser, which has a pulse energy that is millions of times larger than any other source with a peak power exceeding 100 GW, with a unique combination of high intensity, high photon energy and short pulse duration.
Abstract: The quantum-mechanical motion of electrons in molecules and solids occurs on the sub-femtosecond timescale. Consequently, the study of ultrafast electronic phenomena requires the generation of laser pulses shorter than 1 fs and of sufficient intensity to interact with their target with high probability. Probing these dynamics with atomic-site specificity requires the extension of sub-femtosecond pulses to the soft X-ray spectral region. Here, we report the generation of isolated soft X-ray attosecond pulses with an X-ray free-electron laser. Our source has a pulse energy that is millions of times larger than any other source of isolated attosecond pulses in the soft X-ray spectral region, with a peak power exceeding 100 GW. This unique combination of high intensity, high photon energy and short pulse duration enables the investigation of electron dynamics with X-ray nonlinear spectroscopy and single-particle imaging, unlocking a path towards a new era of attosecond science. The generation of ultrashort X-ray pulses with a peak power exceeding 100 GW offers new opportunities for studying electron dynamics with nonlinear spectroscopy and single-particle imaging.

220 citations

Journal ArticleDOI
TL;DR: The analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.
Abstract: Few-femtosecond synchronization at free-electron lasers is key for nearly all experimental applications, stable operation and future light source development. Here, Schulz et al. demonstrate all-optical synchronization of the soft X-ray FEL FLASH to better than 30 fs and illustrate a pathway to sub-10 fs.

197 citations

Journal ArticleDOI
TL;DR: The generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source represents an improvement of over an order of magnitude in peak power over state-of-the-art two- Colour XFels.
Abstract: The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

180 citations

References
More filters
Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations

Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations

Journal ArticleDOI
Wolfgang Ackermann1, G. Asova, Valeri Ayvazyan2, A. Azima2  +154 moreInstitutions (16)
TL;DR: In this paper, the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured.
Abstract: We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 J for individual pulses, and the average energy per pulse reached 70 J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

1,390 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of a free electron laser in the high gain regime and the conditions for the emergence of a collective instability in the electron beam-undulator-field system were studied.

1,224 citations

Journal ArticleDOI
TL;DR: In this paper, the Weizsacker-Williams method is used to calculate the gain due to the induced emission of radiation into a single electromagnetic mode parallel to the motion of a relativistic electron through a periodic transverse dc magnetic field.
Abstract: The Weizsacker‐Williams method is used to calculate the gain due to the induced emission of radiation into a single electromagnetic mode parallel to the motion of a relativistic electron through a periodic transverse dc magnetic field. Finite gain is available from the far‐infrared through the visible region raising the possibility of continuously tunable amplifiers and oscillators at these frequencies with the further possibility of partially coherent radiation sources in the ultraviolet and x‐ray regions to beyond 10 keV. Several numerical examples are considered.

929 citations

Related Papers (5)