scispace - formally typeset
Search or ask a question

Twofish : A 128-bit block cipher

01 Jan 1998-
TL;DR: The design of both the round function and the key schedule permits a wide variety of tradeoffs between speed, software size, key setup time, gate count, and memory.
Abstract: Twofish is a 128-bit block cipher that accepts a variable-length key up to 256 bits. The cipher is a 16-round Feistel network with a bijective F function made up of four key-dependent 8-by-8-bit S-boxes, a fixed 4-by-4 maximum distance separable matrix over GF(2), a pseudo-Hadamard transform, bitwise rotations, and a carefully designed key schedule. A fully optimized implementation of Twofish encrypts on a Pentium Pro at 17.8 clock cycles per byte, and an 8-bit smart card implementation encrypts at 1660 clock cycles per byte. Twofish can be implemented in hardware in 14000 gates. The design of both the round function and the key schedule permits a wide variety of tradeoffs between speed, software size, key setup time, gate count, and memory. We have extensively cryptanalyzed Twofish; our best attack breaks 5 rounds with 2 chosen plaintexts and 2 effort.

Content maybe subject to copyright    Report

Citations
More filters
Book
14 Feb 2002
TL;DR: The underlying mathematics and the wide trail strategy as the basic design idea are explained in detail and the basics of differential and linear cryptanalysis are reworked.
Abstract: 1. The Advanced Encryption Standard Process.- 2. Preliminaries.- 3. Specification of Rijndael.- 4. Implementation Aspects.- 5. Design Philosophy.- 6. The Data Encryption Standard.- 7. Correlation Matrices.- 8. Difference Propagation.- 9. The Wide Trail Strategy.- 10. Cryptanalysis.- 11. Related Block Ciphers.- Appendices.- A. Propagation Analysis in Galois Fields.- A.1.1 Difference Propagation.- A.l.2 Correlation.- A. 1.4 Functions that are Linear over GF(2).- A.2.1 Difference Propagation.- A.2.2 Correlation.- A.2.4 Functions that are Linear over GF(2).- A.3.3 Dual Bases.- A.4.2 Relationship Between Trace Patterns and Selection Patterns.- A.4.4 Illustration.- A.5 Rijndael-GF.- B. Trail Clustering.- B.1 Transformations with Maximum Branch Number.- B.2 Bounds for Two Rounds.- B.2.1 Difference Propagation.- B.2.2 Correlation.- B.3 Bounds for Four Rounds.- B.4 Two Case Studies.- B.4.1 Differential Trails.- B.4.2 Linear Trails.- C. Substitution Tables.- C.1 SRD.- C.2 Other Tables.- C.2.1 xtime.- C.2.2 Round Constants.- D. Test Vectors.- D.1 KeyExpansion.- D.2 Rijndael(128,128).- D.3 Other Block Lengths and Key Lengths.- E. Reference Code.

3,444 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Journal ArticleDOI
TL;DR: Using the well-known principles in the cryptanalysis it is shown that these ciphers do not behave worse than the standard ones, opening in this way a novel approach to the design of block encryption cipher.
Abstract: This paper is devoted to the analysis of the impact of chaos-based techniques on block encryption ciphers. We present several chaos based ciphers. Using the well-known principles in the cryptanalysis we show that these ciphers do not behave worse than the standard ones, opening in this way a novel approach to the design of block encryption ciphers.

638 citations


Cites methods from "Twofish : A 128-bit block cipher"

  • ...In Section V we discuss different ways of using chaos based ciphers, and we close our paper with conclusion in Section VI....

    [...]

Journal ArticleDOI
TL;DR: Having reviewed further public analysis of the finalists, NIST has decided to propose Rijndael as the Advanced Encryption Standard (AES).
Abstract: In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST’s statutory responsibilities. In 1998, NIST announced the acceptance of fifteen candidate algorithms and requested the assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial examination of the security and efficiency characteristics for each algorithm. NIST reviewed the results of this preliminary research and selected MARS, RC6™, Rijndael, Serpent and Twofish as finalists. Having reviewed further public analysis of the finalists, NIST has decided to propose Rijndael as the Advanced Encryption Standard (AES). The research results and rationale for this selection are documented in this report.

388 citations


Cites background from "Twofish : A 128-bit block cipher"

  • ...Twofish [83] is a Feistel network with 16 rounds....

    [...]

  • ...The Twofish specification [83] also reports attacks on reduced-round variants of Twofish that are considerably simplified in other ways: for example, by using fixed S-boxes, by removing whitening or subkeys, or by allowing partial key guesses....

    [...]

Book ChapterDOI
Thomas S. Messerges1
10 Apr 2000
TL;DR: Techniques to protect software implementations of the AES candidate algorithms from power analysis attacks are investigated and new countermeasures that employ random masks are developed and the performance characteristics of these countermeasures are analyzed.
Abstract: Techniques to protect software implementations of the AES candidate algorithms from power analysis attacks are investigated. New countermeasures that employ random masks are developed and the performance characteristics of these countermeasures are analyzed. Implementations in a 32-bit, ARM-based smartcard are considered.

369 citations


Cites background or methods from "Twofish : A 128-bit block cipher"

  • ...The field of candidates for the final round of the Advanced Encryption Standard (AES) selection process has been narrowed from fifteen down to five finalists: Mars [1], RC6 [2], Rijndael [3], Serpent [4], and Twofish [ 5 ]....

    [...]

  • ...More efficient implementations have been described that use key dependent tables [ 5 ], but these implementations are not suitable for low-memory smartcards....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper suggests ways to solve currently open problems in cryptography, and discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.
Abstract: Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper suggests ways to solve these currently open problems. It also discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

14,980 citations

Journal ArticleDOI
TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.
Abstract: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d ≡ 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.

14,659 citations

Book
01 Jan 1977
TL;DR: This book presents an introduction to BCH Codes and Finite Fields, and methods for Combining Codes, and discusses self-dual Codes and Invariant Theory, as well as nonlinear Codes, Hadamard Matrices, Designs and the Golay Code.
Abstract: Linear Codes. Nonlinear Codes, Hadamard Matrices, Designs and the Golay Code. An Introduction to BCH Codes and Finite Fields. Finite Fields. Dual Codes and Their Weight Distribution. Codes, Designs and Perfect Codes. Cyclic Codes. Cyclic Codes: Idempotents and Mattson-Solomon Polynomials. BCH Codes. Reed-Solomon and Justesen Codes. MDS Codes. Alternant, Goppa and Other Generalized BCH Codes. Reed-Muller Codes. First-Order Reed-Muller Codes. Second-Order Reed-Muller, Kerdock and Preparata Codes. Quadratic-Residue Codes. Bounds on the Size of a Code. Methods for Combining Codes. Self-dual Codes and Invariant Theory. The Golay Codes. Association Schemes. Appendix A. Tables of the Best Codes Known. Appendix B. Finite Geometries. Bibliography. Index.

10,083 citations

Journal ArticleDOI
Taher Elgamal1
23 Aug 1985
TL;DR: A new signature scheme is proposed, together with an implementation of the Diffie-Hellman key distribution scheme that achieves a public key cryptosystem that relies on the difficulty of computing discrete logarithms over finite fields.
Abstract: A new signature scheme is proposed, together with an implementation of the Diffie-Hellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields.

7,514 citations

Book ChapterDOI
18 Aug 1996
TL;DR: By carefully measuring the amount of time required to perform private key operalions, attackers may be able to find fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems.
Abstract: By carefully measuring the amount of time required tm perform private key operalions, attackers may be able to find fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems. Against, a valnerable system, the attack is computationally inexpensive and often requires only known ciphertext. Actual systems are potentially at risk, including cryptographic tokens, network-based cryptosystems, and other applications where attackers can make reasonably accurate timing measurements. Techniques for preventing the attack for RSA and Diffie-Hellman are presented. Some cryptosystems will need to be revised to protect against the attack, and new protocols and algorithms may need to incorporate measures to prevenl timing attacks.

3,989 citations