scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome

TL;DR: In situ analysis of tumor-infiltrating immune cells may be a valuable prognostic tool in the treatment of colorectal cancer and possibly other malignancies.
Abstract: The role of the adaptive immune response in controlling the growth and recurrence of human tumors has been controversial. We characterized the tumor-infiltrating immune cells in large cohorts of human colorectal cancers by gene expression profiling and in situ immunohistochemical staining. Collectively, the immunological data (the type, density, and location of immune cells within the tumor samples) were found to be a better predictor of patient survival than the histopathological methods currently used to stage colorectal cancer. The results were validated in two additional patient populations. These data support the hypothesis that the adaptive immune response influences the behavior of human tumors. In situ analysis of tumor-infiltrating immune cells may therefore be a valuable prognostic tool in the treatment of colorectal cancer and possibly other malignancies.
Citations
More filters
Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations


Cites background from "Type, Density, and Location of Immu..."

  • ...Indeed, in some cases, infiltration of tumors by activated T cells decreases the rate of metastasis (Galon et al., 2006; Pagès et al., 2005)....

    [...]

  • ...Indeed, in some cases, infiltration of tumors by activated T cells decreases the rate of metastasis (Galon et al., 2006; Pagès et al., 2005)....

    [...]

  • ...Increased T cell numbers, specifically activated CTLs and Th1 cells, correlate with better survival in some cancers, including invasive colon cancer, melanoma, multiple myeloma, and pancreatic cancer (Galon et al., 2006; Laghi et al., 2009; Swann and Smyth, 2007)....

    [...]

  • ...Increased T cell numbers, specifically activated CTLs and Th1 cells, correlate with better survival in some cancers, including invasive colon cancer, melanoma, multiple myeloma, and pancreatic cancer (Galon et al., 2006; Laghi et al., 2009; Swann and Smyth, 2007)....

    [...]

Journal ArticleDOI
TL;DR: This study showed that mismatch-repair status predicted clinical benefit of immune checkpoint blockade with pembrolizumab, and high somatic mutation loads were associated with prolonged progression-free survival.
Abstract: BackgroundSomatic mutations have the potential to encode “non-self” immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade. MethodsWe conducted a phase 2 study to evaluate the clinical activity of pembrolizumab, an anti–programmed death 1 immune checkpoint inhibitor, in 41 patients with progressive metastatic carcinoma with or without mismatch-repair deficiency. Pembrolizumab was administered intravenously at a dose of 10 mg per kilogram of body weight every 14 days in patients with mismatch repair–deficient colorectal cancers, patients with mismatch repair–proficient colorectal cancers, and patients with mismatch repair–deficient cancers that were not colorectal. The coprimary end points were the immune-related objective response rate and the 20-week immune-related progression-free survival rate. ResultsThe immune-related objective response rate and immune-related progression-free survival ...

6,835 citations

Journal ArticleDOI
27 Nov 2014-Nature
TL;DR: It is shown that pre-existing CD8+ T cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy.
Abstract: Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8(+) T cells (termed adaptive immune resistance) Here we show that pre-existing CD8(+) T cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy We analysed samples from 46 patients with metastatic melanoma obtained before and during anti-PD-1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next-generation sequencing for T-cell antigen receptors (TCRs) In serially sampled tumours, patients responding to treatment showed proliferation of intratumoral CD8(+) T cells that directly correlated with radiographic reduction in tumour size Pre-treatment samples obtained from responding patients showed higher numbers of CD8-, PD-1- and PD-L1-expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients Our findings indicate that tumour regression after therapeutic PD-1 blockade requires pre-existing CD8(+) T cells that are negatively regulated by PD-1/PD-L1-mediated adaptive immune resistance

5,129 citations

Journal ArticleDOI
25 Mar 2011-Science
TL;DR: A unifying conceptual framework called “cancer immunoediting,” which integrates the immune system’s dual host-protective and tumor-promoting roles is discussed.
Abstract: Understanding how the immune system affects cancer development and progression has been one of the most challenging questions in immunology. Research over the past two decades has helped explain why the answer to this question has evaded us for so long. We now appreciate that the immune system plays a dual role in cancer: It can not only suppress tumor growth by destroying cancer cells or inhibiting their outgrowth but also promote tumor progression either by selecting for tumor cells that are more fit to survive in an immunocompetent host or by establishing conditions within the tumor microenvironment that facilitate tumor outgrowth. Here, we discuss a unifying conceptual framework called "cancer immunoediting," which integrates the immune system's dual host-protective and tumor-promoting roles.

5,026 citations

Journal ArticleDOI
TL;DR: In this Opinion article, the context-specific nature of infiltrating immune cells can affect the prognosis of patients is discussed.
Abstract: Tumours grow within an intricate network of epithelial cells, vascular and lymphatic vessels, cytokines and chemokines, and infiltrating immune cells. Different types of infiltrating immune cells have different effects on tumour progression, which can vary according to cancer type. In this Opinion article we discuss how the context-specific nature of infiltrating immune cells can affect the prognosis of patients.

3,759 citations


Cites background from "Type, Density, and Location of Immu..."

  • ..., and that culminated with the demonstration that infiltrating T cells have a major effect on the clinical attributes of human cance...

    [...]

References
More filters
Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
TL;DR: The historical and experimental basis of cancer immunoediting is summarized and its dual roles in promoting host protection against cancer and facilitating tumor escape from immune destruction are discussed.
Abstract: The concept that the immune system can recognize and destroy nascent transformed cells was originally embodied in the cancer immunosurveillance hypothesis of Burnet and Thomas. This hypothesis was abandoned shortly afterwards because of the absence of strong experimental evidence supporting the concept. New data, however, clearly show the existence of cancer immunosurveillance and also indicate that it may function as a component of a more general process of cancer immunoediting. This process is responsible for both eliminating tumors and sculpting the immunogenic phenotypes of tumors that eventually form in immunocompetent hosts. In this review, we will summarize the historical and experimental basis of cancer immunoediting and discuss its dual roles in promoting host protection against cancer and facilitating tumor escape from immune destruction.

4,586 citations

Journal ArticleDOI
13 Dec 1991-Science
TL;DR: In this paper, a gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line, which belongs to a family of at least three genes.
Abstract: Many human melanoma tumors express antigens that are recognized in vitro by cytolytic T lymphocytes (CTLs) derived from the tumor-bearing patient. A gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line. This gene shows no similarity to known sequences and belongs to a family of at least three genes. It is expressed by the original melanoma cells, other melanoma cell lines, and by some tumor cells of other histological types. No expression was observed in a panel of normal tissues. Antigen MZ2-E appears to be presented by HLA-A1; anti-MZ2-E CTLs of the original patient recognized two melanoma cell lines of other HLA-A1 patients that expressed the gene. Thus, precisely targeted immunotherapy directed against antigen MZ2-E could be provided to individuals identified by HLA typing and analysis of the RNA of a small tumor sample.

3,497 citations

Journal ArticleDOI
TL;DR: Macrophages are educated by the tumour microenvironment, so that they adopt a trophic role that facilitates angiogenesis, matrix breakdown and tumour-cell motility — all of which are elements of the metastatic process.
Abstract: Evidence from clinical and experimental studies indicates that macrophages promote solid-tumour progression and metastasis. Macrophages are educated by the tumour microenvironment, so that they adopt a trophic role that facilitates angiogenesis, matrix breakdown and tumour-cell motility — all of which are elements of the metastatic process. During an inflammatory response, macrophages also produce many compounds — ranging from mutagenic oxygen and nitrogen radicals to angiogenic factors — that can contribute to cancer initiation and promotion. Macrophages therefore represent an important drug target for cancer prevention and cure.

3,130 citations

Related Papers (5)