scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Type IIA topoisomerase inhibition by a new class of antibacterial agents.

TL;DR: This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.
Abstract: Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.
Citations
More filters
Journal ArticleDOI
TL;DR: This review describes the development of the quinolones as antibacterials, the structure and function of gyrase and topoisomerase IV, and the mechanistic basis for quInolone action against their enzyme targets, and suggests approaches to designing new drugs that display improved activity against resistant strains.
Abstract: Quinolones are one of the most commonly prescribed classes of antibacterials in the world and are used to treat a variety of bacterial infections in humans. Because of the wide use (and overuse) of these drugs, the number of quinolone-resistant bacterial strains has been growing steadily since the 1990s. As is the case with other antibacterial agents, the rise in quinolone resistance threatens the clinical utility of this important drug class. Quinolones act by converting their targets, gyrase and topoisomerase IV, into toxic enzymes that fragment the bacterial chromosome. This review describes the development of the quinolones as antibacterials, the structure and function of gyrase and topoisomerase IV, and the mechanistic basis for quinolone action against their enzyme targets. It will then discuss the following three mechanisms that decrease the sensitivity of bacterial cells to quinolones. Target-mediated resistance is the most common and clinically significant form of resistance. It is caused by specific mutations in gyrase and topoisomerase IV that weaken interactions between quinolones and these enzymes. Plasmid-mediated resistance results from extrachromosomal elements that encode proteins that disrupt quinolone–enzyme interactions, alter drug metabolism, or increase quinolone efflux. Chromosome-mediated resistance results from the underexpression of porins or the overexpression of cellular efflux pumps, both of which decrease cellular concentrations of quinolones. Finally, this review will discuss recent advancements in our understanding of how quinolones interact with gyrase and topoisomerase IV and how mutations in these enzymes cause resistance. These last findings suggest approaches to designing new drugs that display improved activity against resistant strains.

839 citations

Journal ArticleDOI
TL;DR: This review discusses how topoisomerase inhibitors kill cells by trapping topoisomersases on DNA rather than by classical enzymatic inhibition, and extends to a novel mechanism of action of PARP inhibitors and could be applied to the targeting of transcription factors.
Abstract: Topoisomerases are ubiquitous enzymes that control DNA supercoiling and entanglements. They are essential during transcription and replication, and topoisomerase inhibitors are among the most effective and most commonly used anticancer and antibacterial drugs. This review consists of two parts. In the first part (“Lessons”), it gives background information on the catalytic mechanisms of the different enzyme families (6 different genes in humans and 4 in most bacteria), describes the “interfacial inhibition” by which topoisomerase-targeted drugs act as topoisomerase poisons, and describes clinically relevant topoisomerase inhibitors. It generalizes the interfacial inhibition principle, which was discovered from the mechanism of action of topoisomerase inhibitors, and discusses how topoisomerase inhibitors kill cells by trapping topoisomerases on DNA rather than by classical enzymatic inhibition. Trapping protein–DNA complexes extends to a novel mechanism of action of PARP inhibitors and could be applied to...

671 citations

Journal ArticleDOI
TL;DR: New Delhi metallo-β-lactamase (NDM) enzymes are the latest carbapenemases to be recognized and since 2008 have been reported worldwide, mostly in bacteria from patients epidemiologically linked to the Indian subcontinent, where they occur widely in hospital and community infections, and also in contaminated urban water.

574 citations

Journal ArticleDOI
TL;DR: It is shown that topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands, which has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation.
Abstract: Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases are frequently linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation and utility as therapeutic targets.

528 citations

Journal ArticleDOI
TL;DR: It is suggested that, if the world is to return to a situation in which there are enough antibiotics to cope with the inevitable ongoing emergence of bacterial resistance, it needs to recreate the prolific antibiotic discovery period between 1940 and 1962, which produced 20 classes that served the world well for 60 years.
Abstract: The world is running out of antibiotics. Between 1940 and 1962, more than 20 new classes of antibiotics were marketed. Since then, only two new classes have reached the market. Analogue development kept pace with the emergence of resistant bacteria until 10-20 years ago. Now, not enough analogues are reaching the market to stem the tide of antibiotic resistance, particularly among gram-negative bacteria. This review examines the existing systemic antibiotic pipeline in the public domain, and reveals that 27 compounds are in clinical development, of which two are new classes, both of which are in Phase I clinical trials. In view of the high attrition rate of drugs in early clinical development, particularly new classes and the current regulatory hurdles, it does not seem likely that new classes will be marketed soon. This paper suggests that, if the world is to return to a situation in which there are enough antibiotics to cope with the inevitable ongoing emergence of bacterial resistance, we need to recreate the prolific antibiotic discovery period between 1940 and 1962, which produced 20 classes that served the world well for 60 years. If another 20 classes and their analogues, particularly targeting gram-negatives could be produced soon, they might last us for the next 60 years. How can this be achieved? Only a huge effort by governments in the form of finance, legislation and providing industry with real incentives will reverse this. Industry needs to re-enter the market on a much larger scale, and academia should rebuild its antibiotic discovery infrastructure to support this effort. The alternative is Medicine without effective antibiotics.

508 citations


Cites background from "Type IIA topoisomerase inhibition b..."

  • ...There are two new classes in Phase I and a small number in the pre-clinical and discovery phases, for example, a new class which targets type IIA topoisomerases with a new mechanism of action (Bax et al., 2010)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics.
Abstract: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics. The map-fitting tools are available as a stand-alone package, distributed as `Coot'.

27,505 citations

01 Jan 2002

19,213 citations

Journal ArticleDOI
TL;DR: The CCP4 (Collaborative Computational Project, number 4) program suite is a collection of programs and associated data and subroutine libraries which can be used for macromolecular structure determination by X-ray crystallography.
Abstract: The CCP4 (Collaborative Computational Project, number 4) program suite is a collection of programs and associated data and subroutine libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims and so there may be more than one program to cover each function. The programs are written mainly in standard Fortran77. They are from a wide variety of sources but are connected by standard data file formats. The package has been ported to all the major platforms under both Unix and VMS. The suite is distributed by anonymous ftp from Daresbury Laboratory and is widely used throughout the world.

17,220 citations

Journal ArticleDOI
TL;DR: The Crystallography & NMR System (CNS) as mentioned in this paper is a software suite for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy.
Abstract: A new software suite, called Crystallography & NMR System (CNS), has been developed for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy. In contrast to existing structure-determination programs the architecture of CNS is highly flexible, allowing for extension to other structure-determination methods, such as electron microscopy and solid-state NMR spectroscopy. CNS has a hierarchical structure: a high-level hypertext markup language (HTML) user interface, task-oriented user input files, module files, a symbolic structure-determination language (CNS language), and low-level source code. Each layer is accessible to the user. The novice user may just use the HTML interface, while the more advanced user may use any of the other layers. The source code will be distributed, thus source-code modification is possible. The CNS language is sufficiently powerful and flexible that many new algorithms can be easily implemented in the CNS language without changes to the source code. The CNS language allows the user to perform operations on data structures, such as structure factors, electron-density maps, and atomic properties. The power of the CNS language has been demonstrated by the implementation of a comprehensive set of crystallographic procedures for phasing, density modification and refinement. User-friendly task-oriented input files are available for nearly all aspects of macromolecular structure determination by X-ray crystallography and solution NMR.

15,182 citations