scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Über Umlagerung von Phenol‐allyläthern in C‐Allyl‐phenole

01 Oct 1912-European Journal of Inorganic Chemistry (John Wiley & Sons, Ltd)-Vol. 45, Iss: 3, pp 3157-3166
TL;DR: Salmiak as mentioned in this paper verwandelter Verbindungen in 0-Alkylderivaten and C-Derivate umzulagern, tritt diese Neigung bei den 0 A 11 y lderivaten i n stitrkstem Mn5e hervor.
Abstract: Bei Wiederauinahme meiner Arbeiten iiber die 0 A l k y l d e r i v a t e d e s A c e t e s s i g e s t e r s und verwandter Verbindungen hat sich ein bemerkenswerter Unterschied gezeigt, der zwischen den 0-Alkylderivaten mit den gewiihnlichen gesLt t ig ten A l k g l e n (Methyl, Athyl, Propyl usw.) einerseits und den %All yl'derivaten andererseits besteht. Wahrend die ersteren so gut wie gar keine Neigung zeigen, sich in die isomeren C-Derivate umzulagern, tritt diese Neigung bei den 0 A 11 y lderivaten i n stitrkstem Mn5e hervor. 0Al ly 1acetessigester wird beim Destillieren uber etwas Salmiak fast vollstiindig in 0Ally l ace t ess iges t e r verwandelt :
Citations
More filters
Journal ArticleDOI
TL;DR: The latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks are discussed, paving the way to applications and the realization of a new era of “molecular nanotechnology”.
Abstract: The widespread use of molecular machines in biology has long suggested that great rewards could come from bridging the gap between synthetic molecular systems and the machines of the macroscopic world. In the last two decades, it has proved possible to design synthetic molecular systems with architectures where triggered large amplitude positional changes of submolecular components occur. Perhaps the best way to appreciate the technological potential of controlled molecular-level motion is to recognize that nanomotors and molecular-level machines lie at the heart of every significant biological process. Over billions of years of evolution, nature has not repeatedly chosen this solution for performing complex tasks without good reason. When mankind learns how to build artificial structures that can control and exploit molecular level motion and interface their effects directly with other molecular-level substructures and the outside world, it will potentially impact on every aspect of functional molecule and materials design. An improved understanding of physics and biology will surely follow. The first steps on the long path to the invention of artificial molecular machines were arguably taken in 1827 when the Scottish botanist Robert Brown observed the haphazard motion of tiny particles under his microscope.1,2 The explanation for Brownian motion, that it is caused by bombardment of the particles by molecules as a consequence of the kinetic theory of matter, was later provided by Einstein, followed by experimental verification by Perrin.3,4 The random thermal motion of molecules and its implications for the laws of thermodynamics in turn inspired Gedankenexperiments (“thought experiments”) that explored the interplay (and apparent paradoxes) of Brownian motion and the Second Law of Thermodynamics. Richard Feynman’s famous 1959 lecture “There’s plenty of room at the bottom” outlined some of the promise that manmade molecular machines might hold.5,6 However, Feynman’s talk came at a time before chemists had the necessary synthetic and analytical tools to make molecular machines. While interest among synthetic chemists began to grow in the 1970s and 1980s, progress accelerated in the 1990s, particularly with the invention of methods to make mechanically interlocked molecular systems (catenanes and rotaxanes) and control and switch the relative positions of their components.7−24 Here, we review triggered large-amplitude motions in molecular structures and the changes in properties these can produce. We concentrate on conformational and configurational changes in wholly covalently bonded molecules and on catenanes and rotaxanes in which switching is brought about by various stimuli (light, electrochemistry, pH, heat, solvent polarity, cation or anion binding, allosteric effects, temperature, reversible covalent bond formation, etc.). Finally, we discuss the latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks, paving the way to applications and the realization of a new era of “molecular nanotechnology”. 1.1. The Language Used To Describe Molecular Machines Terminology needs to be properly and appropriately defined and these meanings used consistently to effectively convey scientific concepts. Nowhere is the need for accurate scientific language more apparent than in the field of molecular machines. Much of the terminology used to describe molecular-level machines has its origins in observations made by biologists and physicists, and their findings and descriptions have often been misinterpreted and misunderstood by chemists. In 2007 we formalized definitions of some common terms used in the field (e.g., “machine”, “switch”, “motor”, “ratchet”, etc.) so that chemists could use them in a manner consistent with the meanings understood by biologists and physicists who study molecular-level machines.14 The word “machine” implies a mechanical movement that accomplishes a useful task. This Review concentrates on systems where a stimulus triggers the controlled, relatively large amplitude (or directional) motion of one molecular or submolecular component relative to another that can potentially result in a net task being performed. Molecular machines can be further categorized into various classes such as “motors” and “switches” whose behavior differs significantly.14 For example, in a rotaxane-based “switch”, the change in position of a macrocycle on the thread of the rotaxane influences the system only as a function of state. Returning the components of a molecular switch to their original position undoes any work done, and so a switch cannot be used repetitively and progressively to do work. A “motor”, on the other hand, influences a system as a function of trajectory, meaning that when the components of a molecular motor return to their original positions, for example, after a 360° directional rotation, any work that has been done is not undone unless the motor is subsequently rotated by 360° in the reverse direction. This difference in behavior is significant; no “switch-based” molecular machine can be used to progressively perform work in the way that biological motors can, such as those from the kinesin, myosin, and dynein superfamilies, unless the switch is part of a larger ratchet mechanism.14

1,434 citations

Journal ArticleDOI
TL;DR: This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Abstract: Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow Until recently, however, the question, “Should we do this in flow?” has merely been an afterthought This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts

1,192 citations

Journal ArticleDOI
TL;DR: The main findings are: Lanthanide(II) Triflates in Organic Synthesis inorganic Synthesis 2295 10.2.1.
Abstract: 2.1.8. Michael Reaction 2245 2.1.9. Others 2247 2.2. Cyclization Reactions 2248 2.2.1. Carbon Diels−Alder Reactions 2248 2.2.2. Aza-Diels−Alder Reactions 2252 2.2.3. Other Hetero-Diels−Alder Reactions 2255 2.2.4. Ionic Diels−Alder Reaction 2256 2.2.5. 1,3-Dipolar Cycloadditions 2256 2.2.6. Other Cycloaddition Reactions 2258 2.2.7. Prins-type Cyclization 2259 2.3. Friedel−Crafts Acylation and Alkylation 2259 2.4. Baylis−Hillman Reaction 2263 2.5. Radical Addition 2264 2.6. Heterocycle Synthesis 2267 2.7. Diazocarbonyl Insertion 2270 3. C−X (X ) N, O, P, Etc.) Bond Formation 2271 3.1. Aromatic Nitration and Sulfonylation 2271 3.2. Michael Reaction 2272 3.3. Glycosylation 2273 3.4. Aziridination 2275 3.5. Diazocarbonyl Insertion 2276 3.6. Ring-Opening Reactions 2277 3.7. Other C−X Bond Formations 2280 4. Oxidation and Reduction 2280 4.1. Oxidation 2280 4.2. Reduction 2281 5. Rearrangement 2283 6. Protection and Deprotection 2285 6.1. Protection 2285 6.2. Deprotection 2288 7. Polymerization 2291 8. Miscellaneous Reactions 2291 9. Lanthanide(II) Triflates in Organic Synthesis 2295 10. Conclusion 2295 11. Acknowledgment 2295 12. References 2295

923 citations

References
More filters