scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ultracoherence and canonical transformations

01 Sep 2006-Infinite Dimensional Analysis, Quantum Probability and Related Topics (World Scientific Publishing Company)-Vol. 09, Iss: 03, pp 413-434
TL;DR: In this paper, the (in)finite dimensional symplectic group of homogeneous canonical transformations is represented on the bosonic Fock space by the action of the group on the ultracoherent vectors, which are generalizations of the coherent states.
Abstract: The (in)finite dimensional symplectic group of homogeneous canonical transformations is represented on the bosonic Fock space by the action of the group on the ultracoherent vectors, which are generalizations of the coherent states.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors extend linear quantum dynamical network theory to include static Bogoliubov components (such as squeezers), and provide general methods for cascade or series connections, as well as feedback interconnections using linear fractional transformations.
Abstract: The aim of this article is to extend linear quantum dynamical network theory to include static Bogoliubov components (such as squeezers). Within this integrated quantum network theory, we provide general methods for cascade or series connections, as well as feedback interconnections using linear fractional transformations. In addition, we define input-output maps and transfer functions for representing components and describing convergence. We also discuss the underlying group structure in this theory arising from series interconnection. Several examples illustrate the theory.

217 citations

01 Feb 2006
TL;DR: In this paper, the filtration property of delta function and its derivatives as generalized functions is described by using these generalized functions, and the external load term, q(x), can be described by describing the generalized functions using the method of variation of parameters, which makes the form of Wp(x) simpler.
Abstract: When the structures are analyzed by classical method, several governing differential equations are needed if a beam is loaded by many loads But if delta function and its derivatives as generalized functions are used, one governing differential equation is enough In Lw(x) = q(x), where L is a linear differential operator, the particular solution Wp(x) can be obtained as a integral from using the method of variation of parameters Since the external load term, q(x), can be described by using these generalized functions, the filtration property of delta function in a integral makes the form of Wp(x) simpler one The usage of these generalized functions is shown in several sample cases and we can see the convenience of the generalized functions

124 citations

Journal ArticleDOI
TL;DR: In this article, the authors study the dynamics of the quantum phase distribution associated with the reduced density matrix of a system for a number of situations of practical importance, as the system evolves under the influence of its environment, interacting via a quantum non-deletion type of coupling, such that there is decoherence without dissipation, as well as when it interacts via a dissipative interaction, resulting in decocherence and dissipation.
Abstract: We study the dynamics of the quantum phase distribution associated with the reduced density matrix of a system for a number of situations of practical importance, as the system evolves under the influence of its environment, interacting via a quantum nondemolition type of coupling, such that there is decoherence without dissipation, as well as when it interacts via a dissipative interaction, resulting in decoherence as well as dissipation. The system is taken to be either a two-level atom (or, equivalently, a spin-1/2 system) or a harmonic oscillator, and the environment is modeled as a bath of harmonic oscillators, starting out in a squeezed thermal state. The impact of the different environmental parameters on the dynamics of the quantum phase distribution for the system starting out in various initial states is explicitly brought out. An interesting feature that emerges from our work is that the relationship between squeezing and temperature effects depends on the type of system-bath interaction. In the case of a quantum nondemolition type of interaction, squeezing and temperature work in tandem, producing a diffusive effect on the phase distribution. In contrast, in the case of a dissipative interaction, the influence of temperature can be counteracted by squeezing, whichmore » manifests as a resistance to randomization of phase. We make use of the phase distributions to bring out a notion of complementarity in atomic systems. We also study the variance of the phase using phase distributions conditioned on particular initial states of the system.« less

30 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the open quantum system of a two-level atom, or equivalently, a spin-1/2 system, in interaction with quantum reservoirs of either oscillators or spins, under the QND condition of the Hamiltonian of the system commuting with the system-reservoir interaction.
Abstract: In the scheme of a quantum nondemolition (QND) measurement, an observable is measured without perturbing its evolution. In the context of studies of decoherence in quantum computing, we examine the `open' quantum system of a two-level atom, or equivalently, a spin-1/2 system, in interaction with quantum reservoirs of either oscillators or spins, under the QND condition of the Hamiltonian of the system commuting with the system-reservoir interaction. For completeness, we also examine the well-known non-QND spin-Bose problem. For all these many-body systems, we use the methods of functional integration to work out the propagators. The propagators for the QND Hamiltonians are shown to be analogous to the squeezing and rotation operators, respectively, for the two kinds of baths considered. Squeezing and rotation being both phase space area-preserving canonical transformations, this brings out an interesting connection between the energy-preserving QND Hamiltonians and the homogeneous linear canonical transformations.

9 citations

Journal ArticleDOI
TL;DR: In this article, the propagators for the QND Hamiltonians are shown to be analogous to the squeezing and rotation operators, respectively, for the two kinds of baths considered, which brings out an interesting connection between the energy-preserving non-degradation Hamiltonians and the homogeneous linear canonical transformations.
Abstract: In the scheme of a quantum nondemolition (QND) measurement, an observable is measured without perturbing its evolution. In the context of studies of decoherence in quantum computing, we examine the 'open' quantum system of a two-level atom or, equivalently, a spin-1/2 system, in interaction with quantum reservoirs of either oscillators or spins, under the QND condition of the Hamiltonian of the system commuting with the system–reservoir interaction. For completeness, we also examine the well-known non-QND spin-Bose problem. For all these many-body systems, we use the methods of functional integration to work out the propagators. The propagators for the QND Hamiltonians are shown to be analogous to the squeezing and rotation operators, respectively, for the two kinds of baths considered. Squeezing and rotation being both phase-space area-preserving canonical transformations, this brings out an interesting connection between the energy-preserving QND Hamiltonians and the homogeneous linear canonical transformations.

8 citations

References
More filters
Book
01 Jan 1966
TL;DR: The monograph by T Kato as discussed by the authors is an excellent reference work in the theory of linear operators in Banach and Hilbert spaces and is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory.
Abstract: "The monograph by T Kato is an excellent textbook in the theory of linear operators in Banach and Hilbert spaces It is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory In chapters 1, 3, 5 operators in finite-dimensional vector spaces, Banach spaces and Hilbert spaces are introduced Stability and perturbation theory are studied in finite-dimensional spaces (chapter 2) and in Banach spaces (chapter 4) Sesquilinear forms in Hilbert spaces are considered in detail (chapter 6), analytic and asymptotic perturbation theory is described (chapter 7 and 8) The fundamentals of semigroup theory are given in chapter 9 The supplementary notes appearing in the second edition of the book gave mainly additional information concerning scattering theory described in chapter 10 The first edition is now 30 years old The revised edition is 20 years old Nevertheless it is a standard textbook for the theory of linear operators It is user-friendly in the sense that any sought after definitions, theorems or proofs may be easily located In the last two decades much progress has been made in understanding some of the topics dealt with in the book, for instance in semigroup and scattering theory However the book has such a high didactical and scientific standard that I can recomment it for any mathematician or physicist interested in this field Zentralblatt MATH, 836

19,846 citations

Book
27 Aug 1986
TL;DR: In this paper, the authors define the notion of generalized coherent states and define a generalization of the Coherent State Representation T?(g) of the Heisenberg-Weyl Group.
Abstract: I Generalized Coherent States for the Simplest Lie Groups.- 1. Standard System of Coherent States Related to the Heisenberg-Weyl Group: One Degree of Freedom.- 1.1 The Heisenberg-Weyl Group and Its Representations.- 1.1.1 The Heisenberg-Weyl Group.- 1.1.2 Representations of the Heisenberg-Weyl Group.- 1.1.3 Concrete Realization of the Representation T?(g).- 1.2 Coherent States.- 1.3 The Fock-Bargmann Representation.- 1.4 Completeness of Coherent-State Subsystems.- 1.5 Coherent States and Theta Functions.- 1.6 Operators and Their Symbols.- 1.7 Characteristic Functions.- 2. Coherent States for Arbitrary Lie Groups.- 2.1 Definition of the Generalized Coherent State.- 2.2 General Properties of Coherent-State Systems.- 2.3 Completeness and Expansion in States of the CS System.- 2.4 Selection of Generalized CS Systems with States Closest to Classical.- 3. The Standard System of Coherent States Several Degrees of Freedom.- 3.1 General Properties.- 3.2 Coherent States and Theta Functions for Several Degrees of Freedom.- 4. Coherent States for the Rotation Group of Three-Dimensional Space.- 4.1 Structure of the Groups SO(3) and SU(2).- 4.2 Representations of SU(2).- 4.3 Coherent States.- 5. The Most Elementary Noneompact, Non-Abelian Simple Lie Group: SU(1,1).- 5.1 Group SU(1,1) and Its Representations.- 5.1.1 Fundamental Properties ofU(1,1) 67.- 5.1.2 Discrete Series.- 5.1.3 Principal (Continuous) Series.- 5.2 Coherent States.- 5.2.1 Discrete Series.- 5.2.2 Principal (Continuous) Series.- 6. The Lorentz Group: SO(3,1).- 6.1 Representations of the Lorentz Group.- 6.2 Coherent States.- 7. Coherent States for the SO(n, 1) Group: Class-1 Representations of the Principal Series.- 7.1 Class-I Representations of SO(n,1).- 7.2 Coherent States.- 8. Coherent States for a Bosonic System with Finite Number of Degrees of Freedom.- 8.1 Canonical Transformations.- 8.2 Coherent States.- 8.3 Operators in the Space ?B(+).- 9. Coherent States for a Fermionic System with Finite Number of Degrees of Freedom.- 9.1 Canonical Transformations.- 9.2 Coherent States.- 9.3 Operators in the Space ?F(+).- II General Case.- 10. Coherent States for Nilpotent Lie Groups.- 10.1 Structure of Nilpotent Lie Groups.- 10.2 Orbits of Coadjoint Representation.- 10.3 Orbits of Nilpotent Lie Groups.- 10.4 Representations of Nilpotent Lie Groups.- 10.5 Coherent States.- 11. Coherent States for Compact Semisimple Lie Groups.- 11.1 Elements of the Theory of Compact Semisimple Lie Groups..- 11.2 Representations of Compact Simple Lie Groups.- 11.3 Coherent States.- 12. Discrete Series of Representations: The General Case.- 12.1 Discrete Series.- 12.2 Bounded Domains.- 12.3 Coherent States.- 13. Coherent States for Real Semisimple Lie Groups: Class-I Representations of Principal Series.- 13.1 Class-I Representations.- 13.2 Coherent States.- 13.3 Horocycles in Symmetric Space.- 13.4 Rank-1 Symmetric Spaces.- 13.5 Properties of Rank-1 CS Systems.- 13.6 Complex Homogeneous Bounded Domains.- 13.6.1 Type-I Tube Domains.- 13.6.2 Type-II Tube Domains.- 13.6.3 Type-III Tube Domains.- 13.6.4 Type-IV Domains.- 13.6.5 The Exceptional Domain Dv.- 13.7 Properties of the Coherent States.- 14. Coherent States and Discrete Subgroups: The Case of SU(1,1).- 14.1 Preliminaries.- 14.2 Incompleteness Criterion for CS Subsystems Related to Discrete Subgroups.- 14.3 Growth of a Function Analytical in a Disk Related to the Distribution of Its Zeros.- 14.4 Completeness Criterion for CS Subsystems.- 14.5 Discrete Subgroups of SU(1,1) and Automorphic Forms.- 15. Coherent States for Discrete Series and Discrete Subgroups: General Case.- 15.1 Automorphic Forms.- 15.2 Completeness of Some CS Subsystems.- 16. Coherent States and Berezin's Quantization.- 16.1 Classical Mechanics.- 16.2 Quantization.- 16.3 Quantization on the Lobachevsky Plane.- 16.3.1 Description of Operators.- 16.3.2 The Correspondence Principle.- 16.3.3 Operator Th in Terms of a Laplacian.- 16.3.4 Representation of Group of Motions of the Lobachevsky Plane in Space ?h.- 16.3.5 Quantization by Inversions Analog to Weyl Quantization.- 16.4 Quantization on a Sphere.- 16.5 Quantization on Homogeneous Kahler Manifolds.- III Physical Applications.- 17. Preliminaries.- 18. Quantum Oscillators.- 18.1 Quantum Oscillator Acted on by a Variable External Force..- 18.2 Parametric Excitation of a Quantum Oscillator.- 18.3 Quantum Singular Oscillator.- 18.3.1 The Stationary Case.- 18.3.2 The Nonstationary Case.- 18.3.3 The Case of N Interacting Particles.- 18.4 Oscillator with Variable Frequency Acted on by an External Force.- 19. Particles in External Electromagnetic Fields.- 19.1 Spin Motion in a Variable Magnetic Field.- 19.2 Boson Pair Production in a Variable Homogeneous External Field.- 19.2.1 Dynamical Symmetry for Scalar Particles.- 19.2.2 The Multidimensional Case: Coherent States.- 19.2.3 The Multidimensional Case: Nonstationary Problem..- 19.3 Fermion Pair Production in a Variable Homogeneous External Field.- 19.3.1 Dynamical Symmetry for Spin-1/2 particles.- 19.3.2 Heisenberg Representation.- 19.3.3 The Multidimensional Case: Coherent States.- 20. Generating Function for Clebsch-Gordan Coefficients of the SU(2) group.- 21. Coherent States and the Quasiclassical Limit.- 22. 1/N Expansion for Gross-Neveu Models.- 22.1 Description of the Model.- 22.2 Dimensionality of Space ?N= ?O in the Fermion Case.- 22.3 Quasiclassical Limit.- 23. Relaxation to Thermodynamic Equilibrium.- 23.1 Relaxation of Quantum Oscillator to Thermodynamic Equilibrium.- 23.1.1 Kinetic Equation.- 23.1.2 Characteristic Functions and Quasiprobability Distributions.- 23.1.3 Use of Operator Symbols.- 23.2 Relaxation of a Spinning Particle to Thermodynamic Equilibrium in the Presence of a Magnetic Field.- 24. Landau Diamagnetism.- 25. The Heisenberg-Euler Lagrangian.- 26. Synchrotron Radiation.- 27. Classical and Quantal Entropy.- Appendix A. Proof of Completeness for Certain CS Subsystems.- Appendix B. Matrix Elements of the Operator D(y).- Appendix C. Jacobians of Group Transformations for Classical Domains.- Further Applications of the CS Method.- References.- Subject-Index.- Addendum. Further Applications of the CS Method.- References.- References to Addendum.- Subject-Index.

3,565 citations

Journal ArticleDOI
TL;DR: In this article, a two-part review of distribution functions in physics is presented, the first part dealing with fundamentals and the second part with applications, focusing on the so-called P distribution and generalized P distribution.

2,421 citations