scispace - formally typeset
Journal ArticleDOI

Ultracompact optical buffers on a silicon chip

Fengnian Xia, +2 more
- 01 Jan 2007 - 
- Vol. 1, Iss: 1, pp 65-71
Reads0
Chats0
TLDR
In this paper, the trade-offs between resonantly enhanced group delay, device size, insertion loss and operational bandwidth are analyzed for various delay-line designs, and a large fractional group delay exceeding 10 bits is achieved for bit rates as high as 20 Gbps.
Abstract
On-chip optical buffers based on waveguide delay lines might have significant implications for the development of optical interconnects in computer systems. Silicon-on-insulator (SOI) submicrometre photonic wire waveguides are used, because they can provide strong light confinement at the diffraction limit, allowing dramatic scaling of device size. Here we report on-chip optical delay lines based on such waveguides that consist of up to 100 microring resonators cascaded in either coupled-resonator or all-pass filter (APF) configurations. On-chip group delays exceeding 500 ps are demonstrated in a device with a footprint below 0.09 mm2. The trade-offs between resonantly enhanced group delay, device size, insertion loss and operational bandwidth are analysed for various delay-line designs. A large fractional group delay exceeding 10 bits is achieved for bit rates as high as 20 Gbps. Measurements of system-level metrics as bit error rates for different bit rates demonstrate error-free operation up to 5 Gbps.

read more

Citations
More filters
Journal ArticleDOI

Silicon microring resonators

TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Journal ArticleDOI

Slow light in photonic crystals

TL;DR: In this article, the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering are reviewed, and practical issues related to real devices and their applications are also discussed.
Journal ArticleDOI

Imaging topological edge states in silicon photonics

TL;DR: In this paper, topological edge states of light are observed in a two-dimensional array of coupled optical ring resonators, which induce a virtual magnetic field for photons using silicon-on-insulator technology.
Journal ArticleDOI

New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics

TL;DR: In this paper, the authors review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®.
Journal ArticleDOI

Highly anisotropic and robust excitons in monolayer black phosphorus.

TL;DR: The experimental observation of highly anisotropic, bright excitons with large binding energy in monolayer black phosphorus opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices.
References
More filters
Book

Fiber-Optic Communication Systems

TL;DR: In this article, the authors present an overview of the main components of WDM lightwave communication systems, including the following: 1.1 Geometrical-Optics Description, 2.2 Wave Propagation, 3.3 Dispersion in Single-Mode Fibers, 4.4 Dispersion-Induced Limitations.
Journal ArticleDOI

Light speed reduction to 17 metres per second in an ultracold atomic gas

TL;DR: In this paper, an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum, is presented.

Comparative analysis of

TL;DR: This paper critically analyzes the deployment issues of best three proposals considering trade-off between security functions and performance overhead and concludes that none of them is deployable in practical scenario.
Journal ArticleDOI

Micrometre-scale silicon electro-optic modulator

TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Journal ArticleDOI

Coupled-resonator optical waveguide:?a proposal and analysis

TL;DR: The relations for the dispersion and the group velocity of the photonic band of the CROW's are obtained and it is found that they are solely characterized by coupling factor k(1) .
Related Papers (5)