scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ultrafast spin dynamics in ferromagnetic nickel.

27 May 1996-Physical Review Letters (American Physical Society)-Vol. 76, Iss: 22, pp 4250-4253
TL;DR: The relaxation processes of electrons and spins systems following the absorption of femtosecondoptical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probetechniques and the experimental results are adequately described by a model including three interacting reservoirs.
Abstract: The relaxation processes of electrons and spins systems following the absorption of femtosecond optical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probe techniques. The magnetization of the film drops rapidly during the first picosecond, but different electron and spin dynamics are observed for delays in the range 0--5 ps. The experimental results are adequately described by a model including three interacting reservoirs (electron, spin, and lattice).
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the progress in this field of laser manipulation of magnetic order in a systematic way and show that the polarization of light plays an essential role in the manipulation of the magnetic moments at the femtosecond time scale.
Abstract: The interaction of subpicosecond laser pulses with magnetically ordered materials has developed into a fascinating research topic in modern magnetism. From the discovery of subpicosecond demagnetization over a decade ago to the recent demonstration of magnetization reversal by a single 40 fs laser pulse, the manipulation of magnetic order by ultrashort laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation, and quantum computation. Understanding the underlying mechanisms implies understanding the interaction of photons with charges, spins, and lattice, and the angular momentum transfer between them. This paper will review the progress in this field of laser manipulation of magnetic order in a systematic way. Starting with a historical introduction, the interaction of light with magnetically ordered matter is discussed. By investigating metals, semiconductors, and dielectrics, the roles of nearly free electrons, charge redistributions, and spin-orbit and spin-lattice interactions can partly be separated, and effects due to heating can be distinguished from those that are not. It will be shown that there is a fundamental distinction between processes that involve the actual absorption of photons and those that do not. It turns out that for the latter, the polarization of light plays an essential role in the manipulation of the magnetic moments at the femtosecond time scale. Thus, circularly and linearly polarized pulses are shown to act as strong transient magnetic field pulses originating from the nonabsorptive inverse Faraday and inverse Cotton-Mouton effects, respectively. The recent progress in the understanding of magneto-optical effects on the femtosecond time scale together with the mentioned inverse, optomagnetic effects promises a bright future for this field of ultrafast optical manipulation of magnetic order or femtomagnetism.

1,449 citations


Cites background or methods from "Ultrafast spin dynamics in ferromag..."

  • ...It is therefore not surprising that the experimental studies of subpicosecond magnetization dynamics has started with such “simple” systems as Fe Kampfrath et al., 2002; Carpene et al., 2008 , Ni Beaurepaire et al., 1996 , or Gd samples....

    [...]

  • ...However, after femtosecond demagnetization had been demonstrated Beaurepaire et al., 1996 , it became clear that in metals there is a much stronger coupling between the spins and the two other reservoirs....

    [...]

  • ...Since the demonstration of subpicosecond demagnetization by a 60 fs laser pulse by Beaurepaire et al. 1996 , manipulating and controlling magnetization with ultrashort laser pulses has become a challenge....

    [...]

  • ...Such a finding shows that for a spin system far from equilibrium the concept of spin temperature, often used for the description of ultrafast demagnetization Beaurepaire et al., 1996 , is not valid....

    [...]

  • ...Beaurepaire et al. were the first to use 60 fs laser pulses to measure both the transient transmittivity and the linear MOKE of 22 nm Ni films Beaurepaire et al., 1996 , see Fig....

    [...]

Journal ArticleDOI
TL;DR: A brief overview of the state of the art of spin caloritronics can be found in this article, where the authors describe the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).
Abstract: This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa)

1,320 citations

Journal ArticleDOI
TL;DR: In this article, the dependence of the strength of the electron-phonon coupling and the electron heat capacity on the electron temperature was investigated for eight representative metals, Al, Cu, Ag, Au, Ni, Pt, W, and Ti.
Abstract: The dependence of the strength of the electron-phonon coupling and the electron heat capacity on the electron temperature is investigated for eight representative metals, Al, Cu, Ag, Au, Ni, Pt, W, and Ti, for the conditions of strong electron-phonon nonequilibrium. These conditions are characteristic of metal targets subjected to energetic ion bombardment or short-pulse laser irradiation. Computational analysis based on first-principles electronic structure calculations of the electron density of states predicts large deviations (up to an order of magnitude) from the commonly used approximations of linear temperature dependence of the electron heat capacity and a constant electron-phonon coupling. These thermophysical properties are found to be very sensitive to details of the electronic structure of the material. The strength of the electron-phonon coupling can either increase (Al, Au, Ag, Cu, and W), decrease (Ni and Pt), or exhibit nonmonotonic changes (Ti) with increasing electron temperature. The electron heat capacity can exhibit either positive (Au, Ag, Cu, and W) or negative (Ni and Pt) deviations from the linear temperature dependence. The large variations of the thermophysical properties, revealed in this work for the range of electron temperatures typically realized in femtosecond laser material processing applications, have important implications for quantitative computational analysis of ultrafast processes associated with laser interaction with metals.

1,165 citations

Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: It is demonstrated that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect, and offers prospects for applications of ultrafast lasers in magnetic devices.
Abstract: The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (approximately 200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices.

963 citations

Journal ArticleDOI
14 Apr 2011-Nature
TL;DR: It is found that the ultrafast spin reversal in GdFeCo, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state, which provides a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.
Abstract: The dynamics of spin ordering in magnetic materials is of interest for both fundamental understanding and progress in information-processing and recording technology. Radu et al. study spin dynamics in a ferrimagnetic gadolinium–iron–cobalt (GdFeCo) alloy that is optically excited at a timescale shorter than the characteristic magnetic exchange interaction between the Gd and Fe spins. Using element-specific X-ray magnetic circular dichroism spectroscopy, they show that the Gd and Fe spins switch directions at very different timescales. As a consequence, an unexpected transient ferromagnetic state emerges. These surprising observations, supported by simulations, provide a possible new concept of manipulating magnetic order on a timescale of the exchange interaction. Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism1,2,3,4. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However, virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10–100 fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.

827 citations

References
More filters
Journal ArticleDOI

23,110 citations

Book
01 Jan 1953
TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Abstract: Mathematical Introduction Acoustic Phonons Plasmons, Optical Phonons, and Polarization Waves Magnons Fermion Fields and the Hartree-Fock Approximation Many-body Techniques and the Electron Gas Polarons and the Electron-phonon Interaction Superconductivity Bloch Functions - General Properties Brillouin Zones and Crystal Symmetry Dynamics of Electrons in a Magnetic Field: de Haas-van Alphen Effect and Cyclotron Resonance Magnetoresistance Calculation of Energy Bands and Fermi Surfaces Semiconductor Crystals I: Energy Bands, Cyclotron Resonance, and Impurity States Semiconductor Crystals II: Optical Absorption and Excitons Electrodynamics of Metals Acoustic Attenuation in Metals Theory of Alloys Correlation Functions and Neutron Diffraction by Crystals Recoilless Emission Green's Functions - Application to Solid State Physics Appendix: Perturbation Theory and the Electron Gas Index.

21,954 citations