scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading

TL;DR: In this article, a new route to suppress grain growth and tune the sensitivity and selectivity of nanocrystalline SnO2 fibers was presented, where the Pd-loaded sensors have 4 orders of magnitude higher resistivity and exhibit significantly enhanced sensitivity to H2 and lower sensitivity to NO2 compared to their unloaded counterparts.
Abstract: This work presents a new route to suppress grain growth and tune the sensitivity and selectivity of nanocrystalline SnO2 fibers. Unloaded and Pd-loaded SnO2 nanofiber mats are synthesized by electrospinning followed by hot-pressing at 80 °C and calcination at 450 or 600 °C. The chemical composition and microstructure evolution as a function of Pd-loading and calcination temperature are examined using EDS, XPS, XRD, SEM, and HRTEM. Highly porous fibrillar morphology with nanocrystalline fibers comprising SnO2 crystallites decorated with tiny PdO crystallites is observed. The grain size of the SnO2 crystallites in the layers that are calcined at 600 °C decreases with increasing Pd concentration from about 15 nm in the unloaded specimen to about 7 nm in the 40 mol% Pd-loaded specimen, indicating that Pd-loading could effectively suppress the SnO2 grain growth during the calcination step. The Pd-loaded SnO2 sensors have 4 orders of magnitude higher resistivity and exhibit significantly enhanced sensitivity to H2 and lower sensitivity to NO2 compared to their unloaded counterparts. These observations are attributed to enhanced electron depletion at the surface of the PdO-decorated SnO2 crystallites and catalytic effect of PdO in promoting the oxidation of H2 into H2O. These phenomena appear to have a much larger effect on the sensitivity of the Pd-loaded sensors than the reduction in grain size.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed an extension of electrospinning towards fiber formation based not only on polymers of synthetic, biological nature, but also on metals, metal oxides, ceramics, organic/organic, organic-inorganic as well as inorganic/inorganic composite systems.

763 citations

Journal ArticleDOI
Xianfeng Wang1, Bin Ding1, Gang Sun1, Moran Wang2, Jianyong Yu1 
TL;DR: The used polymers and the state-of-the-art strategies for the controllable fabrication of NFN membranes are highlighted in terms of the ESN process and some potential applications associated with the remarkable features ofNFN nanostructure are highlighted.

435 citations


Cites background from "Ultrasensitive and Highly Selective..."

  • ...Developments of nanomaterials have provided researchers with an opportunity to construct electronic interfaces with components whose sizes are comparable to the size of molecules, potentially leading to a much more efficient interface [232–234]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the synergistic effect achieved by combining these two mechanisms are examined, and the authors connect experimental evidence to conceptual mechanistic descriptions by examining adsorption processes, charge transfer, reaction mechanisms, morphology, and ambient gas interactions.
Abstract: Metal oxide resistive-type nano-scale gas sensors have been investigated for their low cost, high sensitivity, and environmentally friendly fabrication. In these sensors, electrical resistance measurements are used to detect the presence of gas. In n-type metal oxides, resistance is increased by coverage of adsorbed oxygen and lowered by removal of adsorbed oxygen through reactions with reducing gasses. The sensitivity and selectivity of these sensors have been improved by incorporation of heterostructures. Heterostructures may improve sensor performance through facilitating catalytic activity, increasing adsorption, and creating a charge carrier depletion layer that produces a larger modulation in resistance. Synergistic effects in these gas sensors describe the improved sensor signal due to these combined effects which act to amplify the reception and transduction of the sensor signal. Receptive mechanisms may be improved by increasing adsorption and reactivity. Transduction mechanisms may be improved by restriction of the major charge conduction channels which helps to maximize resistance modulation. In this review, the synergistic effect achieved by combining these two mechanisms are examined. Fundamental properties of the metal oxide surface are used to provide insight for the large body of experimental evidence available for metal oxide resistive-type gas sensors. This review aims to connect experimental evidence to conceptual mechanistic descriptions by examining adsorption processes, charge transfer, reaction mechanisms, morphology, and ambient gas interactions.

371 citations

Journal ArticleDOI
TL;DR: In this article, a polyimide (PI) nanofiber-based nonwovens have been fabricated via electrospinning for the separators of lithium-ion batteries (LIBs).

343 citations

Journal ArticleDOI
TL;DR: This work demonstrates that optimization of the RGO loading and the operation temperature of RGO-SnO2 nanocomposite gas sensors enables highly sensitive and selective detection of breath markers for the diagnosis of diabetes and halitosis.
Abstract: Sensitive detection of acetone and hydrogen sulfide levels in exhaled human breath, serving as breath markers for some diseases such as diabetes and halitosis, may offer useful information for early diagnosis of these diseases. Exhaled breath analyzers using semiconductor metal oxide (SMO) gas sensors have attracted much attention because they offer low cost fabrication, miniaturization, and integration into portable devices for noninvasive medical diagnosis. However, SMO gas sensors often display cross sensitivity to interfering species. Therefore, selective real-time detection of specific disease markers is a major challenge that must be overcome to ensure reliable breath analysis. In this work, we report on highly sensitive and selective acetone and hydrogen sulfide detection achieved by sensitizing electrospun SnO2 nanofibers with reduced graphene oxide (RGO) nanosheets. SnO2 nanofibers mixed with a small amount (0.01 wt %) of RGO nanosheets exhibited sensitive response to hydrogen sulfide (Rair/Rgas ...

341 citations

References
More filters
Journal ArticleDOI
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

3,833 citations

Journal ArticleDOI
TL;DR: Pd-functionalized nanostructures exhibited a dramatic improvement in sensitivity toward oxygen and hydrogen due to the enhanced catalytic dissociation of the molecular adsorbate on the Pd nanoparticle surfaces and the subsequent diffusion of the resultant atomic species to the oxide surface.
Abstract: The sensing ability of individual SnO2 nanowires and nanobelts configured as gas sensors was measured before and after functionalization with Pd catalyst particles. In situ deposition of Pd in the same reaction chamber in which the sensing measurements were carried out ensured that the observed modification in behavior was due to the Pd functionalization rather than the variation in properties from one nanowire to another. Changes in the conductance in the early stages of metal deposition (i.e., before metal percolation) indicated that the Pd nanoparticles on the nanowire surface created Schottky barrier-type junctions resulting in the formation of electron depletion regions within the nanowire, constricting the effective conduction channel and reducing the conductance. Pd-functionalized nanostructures exhibited a dramatic improvement in sensitivity toward oxygen and hydrogen due to the enhanced catalytic dissociation of the molecular adsorbate on the Pd nanoparticle surfaces and the subsequent diffusion ...

1,307 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of grain size on gas sensitivity were investigated by using porous sintered SnO2 elements fabricated with pure and impurity-doped SnO 2 elements.
Abstract: Effects of grain size on gas sensitivity (S) are investigated by using porous sintered SnO2 elements fabricated with pure SnO2, foreign oxide-stabilized SnO2, or impurity-doped SnO2. When the SnO2 crystallite size (D) is controlled to a size in the range 5–32 nm, S for H2, CO and i-C4H10 is found to increase steeply as D decreases to be comparable with or less than 2L (≈ 6 nm) is both pure and stabilized elements, where L is the depth of the space-charge layer. However, S for ethyl alcohol gas is found to be also affected by surface acid-base properties, being greatly promoted by basic oxides. It is found that the control of L by doping impurities (Al3+ or Sb5+) into the SnO2 lattice results in great changes in S even when D is the same. Thus Al-doped SnO2 shows high sensitivity with increasing L even at D above 20 nm, while Sb-doped SnO2 is insensitive in the whole D region. A model for the grain-size effects is proposed, in which the transducer function is operated by a mechanism of grain control, neck control or grain-boundary control, depending on D.

1,275 citations

Journal ArticleDOI
TL;DR: This work presents a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips, and uses SiO2 surface chemistries to construct a 'nano-electronic nose' library.
Abstract: The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a ‘nano-electronic nose’ library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

935 citations

Journal ArticleDOI
22 May 2009-Science
TL;DR: A genetically modified virus is used to form an efficient cathodic battery material and this environmentally benign low-temperature biological scaffold could facilitate fabrication of electrodes from materials previously excluded because of extremely low electronic conductivity.
Abstract: Development of materials that deliver more energy at high rates is important for high-power applications, including portable electronic devices and hybrid electric vehicles. For lithium-ion (Li+) batteries, reducing material dimensions can boost Li+ ion and electron transfer in nanostructured electrodes. By manipulating two genes, we equipped viruses with peptide groups having affinity for single-walled carbon nanotubes (SWNTs) on one end and peptides capable of nucleating amorphous iron phosphate(a-FePO4) fused to the viral major coat protein. The virus clone with the greatest affinity toward SWNTs enabled power performance of a-FePO4 comparable to that of crystalline lithium iron phosphate (c-LiFePO4) and showed excellent capacity retention upon cycling at 1C. This environmentally benign low-temperature biological scaffold could facilitate fabrication of electrodes from materials previously excluded because of extremely low electronic conductivity.

724 citations