Ultrasonic guided waves in elliptical annular cylinders
23 Sep 2015-Journal of the Acoustical Society of America (Acoustical Society of America)-Vol. 138, Iss: 3
...read more
Citations
More filters
[...]
TL;DR: In this article, the feasibility of using ultrasonic feature guided waves (FGW) for rapid screening of typical 90° bends made of quasi-isotropic composite laminates is explored.
Abstract: Complex-shaped composite components have been extensively incorporated as reinforcing structures in the aerospace industry. Various types of damages can be initiated in these structures due to the stress concentration and out-of-plane impacts during the in-service use, which have to be detected timely in case they propagate at subsurface laminae and ultimately lead to catastrophic failure. This paper explores the feasibility of using ultrasonic feature guided waves (FGW) for rapid screening of typical 90° bends made of quasi-isotropic composite laminates. Such FGWs are capable of focusing the propagation energy along the feature, with limited leakage to the adjacent plate. Modal studies of the composite bent plate are carried out by applying the Semi-Analytical Finite Element (SAFE) method, revealing properties of the FGWs that exist in the structure. A shear horizontal type bend-guided mode has been identified as a promising candidate. The mode is almost non-dispersive and non-leaky with strong energy confinement in the bend region, which is attractive to be applied as a screening tool for composite bends. Both 3D Finite Element (FE) simulations and experiments are performed to study the interaction of the identified FGW mode with different defects occurred in the bend region such as the interlaminar delamination and the transverse crack, showing good agreement. The wave-defect resonance phenomenon and the reflection behavior are investigated for localizing these two types of defects, and the potential of the FGW for efficient damage detection in composite bends is well demonstrated.
40 citations
Cites background from "Ultrasonic guided waves in elliptic..."
[...]
[...]
TL;DR: In this paper, a feature guided wave (FGW) was used for rapid screening of the bond line between a stiffener and a carbon fiber reinforced polymer (CFRP) composite panel.
Abstract: Adhesive bonding is widely used in aerospace composite structures. A continuous well-cured bond can offer good joint strength and improved fatigue and impact resistance, and is therefore crucial to the performance of the entire structure. This paper explores the feasibility of using feature guided waves (FGW) for rapid screening of the bond line between a stiffener and a carbon fiber reinforced polymer (CFRP) composite panel. Such FGWs are capable of focusing the wave energy along the stiffener and the bond layer, with limited radiation to the adjacent plate. The Semi-Analytical Finite Element (SAFE) approach is employed to understand the modal properties of FGWs that exist in the structure, and criteria are suggested to choose proper mode-frequency combination that is sensitive to adhesive defects. A shear horizontal type FGW mode is identified to be well suited, as it is easy to excite, and propagates with little dispersion and relatively low attenuation, while it retains sufficient energy around the bond layer. Both 3D Finite Element (FE) simulations and experiments are performed to study the interaction of the selected FGW mode with defects in the adhesive bond, and the results show excellent agreement. The reflection behavior and the wave-defect resonance phenomenon are investigated, which demonstrate the capability of the FGW for the bond line inspection.
33 citations
[...]
TL;DR: In this article, a numerical tool is developed for the modal study of immersed waveguides with arbitrary cross sections, by coupling the Semi-Analytical Finite Element (SAFE) method with Perfectly Matched Layer (PML).
Abstract: Ultrasonic guided wave is an important non-destructive tool for large area inspections of immersed structures as well as fluid characterizations. In this paper, a numerical tool is developed for the modal study of immersed waveguides with arbitrary cross sections, by coupling the Semi-Analytical Finite Element (SAFE) method with Perfectly Matched Layer (PML). The model is first validated on waveguides with regular cross sections with analytical solutions. It is then applied to immersed waveguides with rectangular cross sections and L-shaped cross sections, showing the potential of guided waves for NDT applications and fluid characterizations.
25 citations
[...]
TL;DR: Semi-Analytical Finite Element simulations revealing the capability of energy confinement carried by two types of guided modes in 90° carbon fiber/epoxy (CF/EP) bends and the feasibility of using such confined guided waves for rapid inspection of bent composite plate structures is discussed.
Abstract: Ultrasonic guided waves have proven to be attractive to the long-range testing of composite laminates. As complex-shaped composite components are increasingly incorporated in high-performance structures, understanding of both anisotropic and geometric effects on guided waves propagation is needed to evaluate their suitability for the non-destructive testing (NDT) of such complex structures. This paper reports the Semi-Analytical Finite Element (SAFE) simulations revealing the capability of energy confinement carried by two types of guided modes in 90° carbon fiber/epoxy (CF/EP) bends. Existence of the phenomenon is cross-validated by both 3D Finite Element (FE) modeling and experimental measurements. The physics of such energy trapping effect is explained in view of geometric variation and anisotropic properties, and the frequency effect on the extent of energy concentration is discussed. Finally, the feasibility of using such confined guided waves for rapid inspection of bent composite plate structures is also discussed.
23 citations
Cites background from "Ultrasonic guided waves in elliptic..."
[...]
[...]
TL;DR: In this article, a fiber Bragg grating based technique was proposed to detect anomalies or defects in plate structures with transverse bends, both in the case of defect-free and transverse defects.
Abstract: Harnessing of ultrasonic guided waves confined in local features such as bends and welds, known as feature-guided waves, has emerged as a promising technique for non-destructive testing and structural health monitoring of industrial and aerospace structures. This article introduces a fiber Bragg grating based technique which uses feature-guided waves to detect anomalies or defects in plate structures with transverse bends. We are able to obtain good consistency between simulation and experimental results, both in the case of defect-free bent plates and those with transverse defects. Such results establish fiber Bragg gratings as a viable alternative to conventional techniques for structural health monitoring of bent plates.
16 citations
Cites background from "Ultrasonic guided waves in elliptic..."
[...]
References
More filters
[...]
TL;DR: In this article, the authors provide a vision of ultrasonic guided wave inspection potential as we move forward into the new millennium and provide a brief description of the sensor and software technology that will make ultrasonic guidance wave inspection commonplace in the next century.
Abstract: Ultrasonic guided wave inspection is expanding rapidly to many different areas of manufacturing and in-service inspection. The purpose of this paper is to provide a vision of ultrasonic guided wave inspection potential aswe move forward into the new millennium. An increased understanding of the basic physics and wave mechanics associated with guided wave inspection has led to an increase in practical nondestructive evaluation and inspection problems. Some fundamental concepts and a number of different applications that are currently being considered will be presented in the paper along with a brief description of the sensor and software technology that will make ultrasonic guided wave inspection commonplace in the next century.
582 citations
[...]
TL;DR: Theoretical and experimental issues of acquiring dispersion curves for bars of arbitrary cross-section for guided waves have great potential for being applied to the rapid non-destructive evaluation of large structures such as rails in the railroad industry.
Abstract: Theoretical and experimental issues of acquiring dispersion curves for bars of arbitrary cross-section are discussed. Since a guided wave can propagate over long distances in a structure, guided waves have great potential for being applied to the rapid non-destructive evaluation of large structures such as rails in the railroad industry. Such fundamental data as phase velocity, group velocity, and wave structure for each guided wave mode is presented for structures with complicated cross-sectional geometries as rail. Phase velocity and group velocity dispersion curves are obtained for bars with an arbitrary cross-section using a semi-analytical finite element method. Since a large number of propagating modes with close phase velocities exist, dispersion curves consisting of only dominant modes are obtained by calculating the displacement at a received point for each mode. These theoretical dispersion curves agree in characteristic parts with the experimental dispersion curves obtained by a two-dimensional Fourier transform technique.
456 citations
[...]
TL;DR: The paper presents the principles of a procedure and then validates and illustrates its use on some examples, and makes use of absorbing regions of material at the exterior bounds of the discretized domain.
Abstract: The Semi-Analytical Finite Element (SAFE) method is becoming established as a convenient method to calculate the properties of waves which may propagate in a waveguide which has arbitrary cross-sectional shape but which is invariant in the propagation direction. A number of researchers have reported work relating to lossless elastic waves, and recently the solutions for nonpropagating waves in elastic guides and for complex waves in viscoelastic guides have been presented. This paper presents a further development, addressing the problem of attenuating waves in which the attenuation is caused by leakage from the waveguide into a surrounding material. This has broad relevance to many practical problems in which a waveguide is immersed in a fluid or embedded in a solid. The paper presents the principles of a procedure and then validates and illustrates its use on some examples. The procedure makes use of absorbing regions of material at the exterior bounds of the discretized domain.
140 citations
[...]
TL;DR: Instrumentation for long range, guided wave inspection of pipework is now commercially available and as discussed by the authors discusses the principles of the method and reviews the results of site experience, which was originally designed to work on pipes that were either un-coated or covered with, for example, epoxy paint.
Abstract: Instrumentation for long range, guided wave inspection of pipework is now commercially available. This paper discusses the principles of the method and reviews the results of site experience. The technique was originally designed to work on pipes that were either un-coated or covered with, for example, epoxy paint. Recent tests have shown promising results with more attenuative coatings and these are discussed.
139 citations
[...]
TL;DR: This paper presents an evolution of the semianalytical finite element method, and gives examples that illustrate new improvements and their importance for studying the propagation of waves along periodic structures of infinite width.
Abstract: The dispersion curves for guided waves have been of constant interest in the last decades, because they constitute the starting point for NDE ultrasonic applications. This paper presents an evolution of the semianalytical finite element method, and gives examples that illustrate new improvements and their importance for studying the propagation of waves along periodic structures of infinite width. Periodic boundary conditions are in fact used to model the infinite periodicity of the geometry in the direction normal to the direction of propagation. This method allows a complete investigation of the dispersion curves and of displacement ∕ stress fields for guided modes in anisotropic and absorbing periodic structures. Among other examples, that of a grooved aluminum plate is theoretically and experimentally investigated, indicating the presence of specific and original guided modes.
100 citations
Related Papers (5)
[...]