scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ultrathin, highly flexible and stretchable PLEDs

TL;DR: In this paper, trathin sheets of polymer LEDs that emit light even when being crumpled or stretched have been realized, and they could prove useful for integration with textiles.
Abstract: Ultrathin sheets of polymer LEDs that emit light even when being crumpled or stretched have been realized The 2-μm-thick devices emit red or orange light with a sufficiently high brightness for indoor applications, and they could prove useful for integration with textiles
Citations
More filters
Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: In this paper, the authors present a platform that makes electronics both virtually unbreakable and imperceptible on polyimide polysilicon elastomers, which can be operated at high temperatures and in aqueous environments.
Abstract: Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.

2,062 citations

Journal ArticleDOI
19 Feb 2018-Nature
TL;DR: The process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices, and demonstrates an intrinsicallyStretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre.
Abstract: Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

1,394 citations

Journal ArticleDOI
15 Dec 2016-Nature
TL;DR: Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics, which are soft, stretchable and mechanically conformable.
Abstract: Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.

1,134 citations

Journal ArticleDOI
04 Mar 2016-Science
TL;DR: An electroluminescent material is presented that is capable of large uniaxial stretching and surface area changes while actively emitting light and is combined in a stretchable electronic material suitable for soft robotics.
Abstract: Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli.

1,008 citations

Journal ArticleDOI
04 Apr 2014-Science
TL;DR: Experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements are described.
Abstract: When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.

975 citations

References
More filters
Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
26 Mar 2010-Science
TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Abstract: Recent advances in mechanics and materials provide routes to integrated circuits that can offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent, and deformed into arbitrary shapes. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we review these strategies and describe applications of them in systems ranging from electronic eyeball cameras to deformable light-emitting displays. We conclude with some perspectives on routes to commercialization, new device opportunities, and remaining challenges for research.

4,127 citations

PatentDOI
06 Apr 2012-Science
TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

1,673 citations

Journal ArticleDOI
TL;DR: The manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber is described, which is constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductor, organic transistors and organic light-emitting diodes.
Abstract: Stretchability will significantly expand the applications scope of electronics, particularly for large-area electronic displays, sensors and actuators. Unlike for conventional devices, stretchable electronics can cover arbitrary surfaces and movable parts. However, a large hurdle is the manufacture of large-area highly stretchable electrical wirings with high conductivity. Here, we describe the manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber. Using an ionic liquid and jet-milling, we produce long and fine SWNT bundles that can form well-developed conducting networks in the rubber. Conductivity of more than 100 S cm(-1) and stretchability of more than 100% are obtained. Making full use of this extraordinary conductivity, we constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductors, organic transistors and organic light-emitting diodes. The display could be stretched by 30-50% and spread over a hemisphere without any mechanical or electrical damage.

1,616 citations

Journal ArticleDOI
25 Apr 2008-Science
TL;DR: A simple approach to high-performance, stretchable, and foldable integrated circuits that integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates.
Abstract: We have developed a simple approach to high-performance, stretchable, and foldable integrated circuits. The systems integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates. The designs combine multilayer neutral mechanical plane layouts and "wavy" structural configurations in silicon complementary logic gates, ring oscillators, and differential amplifiers. We performed three-dimensional analytical and computational modeling of the mechanics and the electronic behaviors of these integrated circuits. Collectively, the results represent routes to devices, such as personal health monitors and other biomedical devices, that require extreme mechanical deformations during installation/use and electronic properties approaching those of conventional systems built on brittle semiconductor wafers.

1,588 citations