scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction.

01 May 2017-Advanced Materials (Adv Mater)-Vol. 29, Iss: 17, pp 1606793
TL;DR: A facile solution reduction method using NaBH4 as a reductant is developed to prepare iron-cobalt oxide nanosheets (Fex Coy -ONSs) with a large specific surface area, ultrathin thickness, and, importantly, abundant oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2 O onto nearby Co3+ sites.
Abstract: Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low-cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron-cobalt oxide nanosheets (FexCoy-ONSs) with a large specific surface area (up to 261.1 m2 g−1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1-ONS measured at an overpotential of 350 mV reaches up to 54.9 A g−1, while its Tafel slope is 36.8 mV dec−1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1-ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1-ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH− ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.
Citations
More filters
Journal ArticleDOI
TL;DR: This article summarized the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects, and introduced strategies to reduce overpotential.
Abstract: Electricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting. The catalyst design has to be built based on the fundamental understanding of the OER mechanism and the origin of the reaction overpotential. In this article, we summarize the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects. We start with the discussion on the AEM and its linked scaling relations among various reaction intermediates. The strategies to reduce overpotential based on the AEM and its derived descriptors are then introduced. To further reduce the OER overpotential, it is necessary to break the scaling relation of HOO* and HO* intermediates in conventional AEM to go beyond the activity limitation of the volcano relationship. Strategies such as stabilization of HOO*, proton acceptor functionality, and switching the OER pathway to LOM are discussed. The remaining questions on the OER and related perspectives are also presented at the end.

1,107 citations

Journal ArticleDOI
TL;DR: In this article, an advanced Co-Nx/C nanorod array derived from 3D ZIF nanocrystals with superior electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) compared to commercial Pt/C and IrO2, respectively, is synthesized.
Abstract: Designing a highly active electrocatalyst with optimal stability at low cost is must and non-negotiable if large-scale implementations of fuel cells are to be fully realized. Zeolitic-imidazolate frameworks (ZIFs) offer rich platforms to design multifunctional materials due to their flexibility and ultrahigh surface area. Herein, an advanced Co–Nx/C nanorod array derived from 3D ZIF nanocrystals with superior electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) compared to commercial Pt/C and IrO2, respectively, is synthesized. Remarkably, as a bifunctional catalyst (Ej = 10 (OER) − E1/2 (ORR) ≈ 0.65 V), it further displays high performance of Zn–air batteries with high cycling stability even at a high current density. Such supercatalytic properties are largely attributed to the synergistic effect of the chemical composition, high surface area, and abundant active sites of the nanorods. The activity origin is clarified through post oxygen reduction X-ray photoelectron spectroscopy analysis and density functional theory studies. Undoubtedly, this approach opens a new avenue to strategically design highly active and performance-oriented electrocatalytic materials for wider electrochemical energy applications.

682 citations

Journal ArticleDOI
TL;DR: A new way for designing oxygen vacancies dominated interface nanowires as highly efficient multifunctional electrocatalysts for electrochemical reactions and renewable energy devices is opened.
Abstract: The development of highly active and stable oxygen evolution reaction (OER) electrocatalysts is crucial for improving the efficiency of water splitting and metal-air battery devices. Herein, an efficient strategy is demonstrated for making the oxygen vacancies dominated cobalt-nickel sulfide interface porous nanowires (NiS2 /CoS2 -O NWs) for boosting OER catalysis through in situ electrochemical reaction of NiS2 /CoS2 interface NWs. Because of the abundant oxygen vacancies and interface porous nanowires structure, they can catalyze the OER efficiently with a low overpotential of 235 mV at j = 10 mA cm-2 and remarkable long-term stability in 1.0 m KOH. The home-made rechargeable portable Zn-air batteries by using NiS2 /CoS2 -O NWs as the air-cathode display a very high open-circuit voltage of 1.49 V, which can maintain for more than 30 h. Most importantly, a highly efficient self-driven water splitting device is designed with NiS2 /CoS2 -O NWs as both anode and cathode, powered by two-series-connected NiS2 /CoS2 -O NWs-based portable Zn-air batteries. The present work opens a new way for designing oxygen vacancies dominated interface nanowires as highly efficient multifunctional electrocatalysts for electrochemical reactions and renewable energy devices.

494 citations

Journal ArticleDOI
Sheng-Hua Ye1, Zi-Xiao Shi1, Jin-Xian Feng1, Yexiang Tong1, Gao-Ren Li1 
TL;DR: Iron-substituted CoOOH porous nanosheet arrays grown on carbon fiber cloth with 3D hierarchical structures synthesized by in situ anodic oxidation of α-Co(OH)2 NSAs/CFC shows superior OER electrocatalytic performance, with a low overpotential, small Tafel slope of 30 mV dec-1, and high durability.
Abstract: Iron-substituted CoOOH porous nanosheet arrays grown on carbon fiber cloth (denoted as Fex Co1-x OOH PNSAs/CFC, 0≤x≤0.33) with 3D hierarchical structures are synthesized by in situ anodic oxidation of α-Co(OH)2 NSAs/CFC in solution of 0.01 m (NH4 )2 Fe(SO4 )2 . X-ray absorption fine spectra (XAFS) demonstrate that CoO6 octahedral structure in CoOOH can be partially substituted by FeO6 octahedrons during the transformation from α-Co(OH)2 to Fex Co1-x OOH, and this is confirmed for the first time in this study. The content of Fe in Fex Co1-x OOH, no more than 1/3 of Co, can be controlled by adjusting the in situ anodic oxidation time. Fe0.33 Co0.67 OOH PNSAs/CFC shows superior OER electrocatalytic performance, with a low overpotential of 266 mV at 10 mA cm-2 , small Tafel slope of 30 mV dec-1 , and high durability.

439 citations

References
More filters
Journal ArticleDOI
TL;DR: Biesinger et al. as mentioned in this paper proposed a more consistent and effective approach to curve fitting based on a combination of standard spectra from quality reference samples, a survey of appropriate literature databases and/or a compilation of literature references and specific literature references where fitting procedures are available.

7,498 citations

Journal ArticleDOI
09 Dec 2011-Science
TL;DR: The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an eg symmetry of surface transition metal cations in an oxide.
Abstract: The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3–δ (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e g symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e g occupancy close to unity, with high covalency of transition metal–oxygen bonds.

3,876 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: In this paper, the oxygen reduction reaction (ORR) active site was characterized by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species.
Abstract: Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.

3,201 citations

Journal ArticleDOI
TL;DR: In this article, a large database of HO* and HOO* adsorption energies on oxide surfaces was used to analyze the reaction free energy diagrams of all the oxides in a general way.
Abstract: Trends in electrocatalytic activity of the oxygen evolution reaction (OER) are investigated on the basis of a large database of HO* and HOO* adsorption energies on oxide surfaces. The theoretical overpotential was calculated by applying standard density functional theory in combination with the computational standard hydrogen electrode (SHE) model. We showed that by the discovery of a universal scaling relation between the adsorption energies of HOO* vs HO*, it is possible to analyze the reaction free energy diagrams of all the oxides in a general way. This gave rise to an activity volcano that was the same for a wide variety of oxide catalyst materials and a universal descriptor for the oxygen evolution activity, which suggests a fundamental limitation on the maximum oxygen evolution activity of planar oxide catalysts.

2,923 citations

Journal ArticleDOI
TL;DR: This study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.
Abstract: The activities of the oxygen evolution reaction (OER) on iridium-oxide- and ruthenium-oxide-based catalysts are among the highest known to date. However, the OER activities of thermodynamically stable rutile iridium oxide (r-IrO2) and rutile iridium oxide (r-RuO2), normalized to catalyst mass or true surface area are not well-defined. Here we report a synthesis of r-IrO2 and r-RuO2 nanoparticles (NPs) of ∼6 nm, and examine their OER activities in acid and alkaline solutions. Both r-IrO2 and r-RuO2 NPs were highly active for OER, with r-RuO2 exhibiting up to 10 A/goxide at 1.48 V versus reversible hydrogen electrode. When comparing the two, r-RuO2 NPs were found to have slightly higher intrinsic and mass OER activities than r-IrO2 in both acid and basic solutions. Interestingly, these oxide NPs showed higher stability under OER conditions than commercial Ru/C and Ir/C catalysts. Our study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrol...

2,762 citations