scispace - formally typeset
Search or ask a question
Book ChapterDOI

Uncalibrated camera based interactive 3DTV

TL;DR: A novel architecture for an interactive 3DTV system based on multiple uncalibrated cameras placed at general positions is proposed and is compatible with the standard multi view coding framework making it amenable to using existing coding and compression algorithms.
Abstract: In this paper we propose a novel architecture for an interactive 3DTV system based on multiple uncalibrated cameras placed at general positions. The signal representation scheme proposed is compatible with the standard multi view coding framework making it amenable to using existing coding and compression algorithms. The proposed scheme also fits naturally to the concept of true 3DTV viewing experience where the viewer can choose a novel viewpoint based on the contents of the scene.
References
More filters
Book

[...]

01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,158 citations

Journal ArticleDOI

[...]

TL;DR: This work presents two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves that allow important cases of discontinuity preserving energies.
Abstract: Many tasks in computer vision involve assigning a label (such as disparity) to every pixel. A common constraint is that the labels should vary smoothly almost everywhere while preserving sharp discontinuities that may exist, e.g., at object boundaries. These tasks are naturally stated in terms of energy minimization. The authors consider a wide class of energies with various smoothness constraints. Global minimization of these energy functions is NP-hard even in the simplest discontinuity-preserving case. Therefore, our focus is on efficient approximation algorithms. We present two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves. These moves can simultaneously change the labels of arbitrarily large sets of pixels. In contrast, many standard algorithms (including simulated annealing) use small moves where only one pixel changes its label at a time. Our expansion algorithm finds a labeling within a known factor of the global minimum, while our swap algorithm handles more general energy functions. Both of these algorithms allow important cases of discontinuity preserving energies. We experimentally demonstrate the effectiveness of our approach for image restoration, stereo and motion. On real data with ground truth, we achieve 98 percent accuracy.

7,060 citations

Journal ArticleDOI

[...]

TL;DR: This paper compares the running times of several standard algorithms, as well as a new algorithm that is recently developed that works several times faster than any of the other methods, making near real-time performance possible.
Abstract: Minimum cut/maximum flow algorithms on graphs have emerged as an increasingly useful tool for exactor approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper is to provide an experimental comparison of the efficiency of min-cut/max flow algorithms for applications in vision. We compare the running times of several standard algorithms, as well as a new algorithm that we have recently developed. The algorithms we study include both Goldberg-Tarjan style "push -relabel" methods and algorithms based on Ford-Fulkerson style "augmenting paths." We benchmark these algorithms on a number of typical graphs in the contexts of image restoration, stereo, and segmentation. In many cases, our new algorithm works several times faster than any of the other methods, making near real-time performance possible. An implementation of our max-flow/min-cut algorithm is available upon request for research purposes.

4,298 citations


"Uncalibrated camera based interacti..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

01 Jan 2004
TL;DR: This work gives a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables.
Abstract: In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.

2,984 citations


"Uncalibrated camera based interacti..." refers background in this paper

  • [...]

Proceedings ArticleDOI

[...]

17 Oct 2005
TL;DR: This work shows that it can estimate the coarse geometric properties of a scene by learning appearance-based models of geometric classes, even in cluttered natural scenes, and provides a multiple-hypothesis framework for robustly estimating scene structure from a single image and obtaining confidences for each geometric label.
Abstract: Many computer vision algorithms limit their performance by ignoring the underlying 3D geometric structure in the image. We show that we can estimate the coarse geometric properties of a scene by learning appearance-based models of geometric classes, even in cluttered natural scenes. Geometric classes describe the 3D orientation of an image region with respect to the camera. We provide a multiple-hypothesis framework for robustly estimating scene structure from a single image and obtaining confidences for each geometric label. These confidences can then be used to improve the performance of many other applications. We provide a thorough quantitative evaluation of our algorithm on a set of outdoor images and demonstrate its usefulness in two applications: object detection and automatic single-view reconstruction.

760 citations


"Uncalibrated camera based interacti..." refers background or methods in this paper

  • [...]

  • [...]

  • [...]